Подвесить вагон только с помощью системы постоянных магнитов, какими бы мощными эти магниты ни были, невозможно. Он обязательно или упадет, или притянется к одному из магнитов, а тогда возникнет механическое соприкосновение и, конечно, трение. Но вагоны на магнитной подвеске существуют! И уже сегодня перевозят людей и грузы. Делается вот так. Вагон снабжают специальным прибором — датчиком, который измеряет высоту расположения вагона. Измеряет очень точно, с ошибкой, не превышающей доли миллиметра. Сигнал от датчика управляет силой электрического тока, образующего магнитное поле подвески.
Стоит вагону чуточку опуститься, немедленно подается сигнал — магнитное поле усиливается и вагон подтягивается вверх. Наоборот, стоит вагону чуточку подняться, снова сигнал — поле ослабляется и вагон опускается. Все это, вместе взятое, называется следящей системой, а в результате вагон остается подвешенным и лишь слегка подрагивает: вверх-вниз-вверх-вниз. На эти-то подрагивания и затрачиваются работа, а следовательно, и энергия — те самые 60 Вт. Как тут снова не вспомнить штангиста. У него все происходило точно так же.
Вроде бы напрашивается вывод, что постоянное магнитное поле не совершает и не может совершить работу, а вот переменное... Но не станем торопиться. Рассмотрим еще одно интересное свойство, в данном случае касающееся одновременно и электрического и магнитного полей. Сначала немного теории. Пусть где-то в пространстве имеются два постоянных поля: электрическое, например между пластинами заряженного конденсатора, и магнитное, например между полюсами подковообразного постоянного магнита. Магнит и конденсатор расположены таким образом, что напряженность электрического поля повсюду направлена перпендикулярно магнитной индукции.
Что показывает теоретический анализ? В пространстве, занятом такими полями, равномерно распределено количество движения. Каждый кубический сантиметр такого пространства обладает количеством движения, величина которого пропорциональна произведению напряженности электрического поля и магнитной индукции. Направлено это количество движения опять-таки поперек, т. е. перпендикулярно плоскости, в которой лежат векторы напряженности электрического поля и магнитной индукции.
Но откуда же количество движения, если и электрическое и магнитное поля постоянные? Здесь нет никаких объектов, которые бы двигались, более того, величины, характеризующие систему, не меняются. Свыкнуться с тем, что количество движения все-таки имеется, чрезвычайно трудно даже человеку, искушенному в физике. Количеством движения, например, обладает свет. Но световой луч все-таки движется! А здесь полное постоянство. Причем, заметьте, что если между пластинами конденсатора, как говорят, нет утечки, изоляция идеальная, то система из конденсатора и магнита может просуществовать хоть миллион лет и ничто в ней не изменится. Электрическое и магнитное поля останутся теми же самыми. Может, здесь вкралась какая-нибудь ошибка?
Достоверность всякой теории подтверждается экспериментом. Такой эксперимент был поставлен. Конденсатор, состоящий из двух цилиндров — внутреннего и наружного, подвесили на тонкой шелковой нити между полюсами постоянного магнита. Конденсатор зарядили, и, как следовало ожидать, ничего не произошло. В пространстве между цилиндрами действовало, во-первых, электрическое поле, направленное к оси цилиндров, во-вторых, магнитное поле, направленное снизу вверх. Как полагали теоретически, всюду в пространстве между цилиндрами существовал вектор количества движения, направленный против часовой стрелки. Поскольку пластины конденсатора имели форму цилиндра, то здесь речь шла о моменте количества движения.
Система оставалась в покое сколь угодно долго, и ничего в ней не менялось. Изоляция между пластинами конденсатора была хорошей, а постоянный магнит — на то он и постоянный. Но вот разрядили конденсатор, причем не прикасаясь к пластине, а осветив воздух между пластинами рентгеновскими лучами и сделав его тем самым проводящим. Исчезло электрическое поле, исчез и момент количества движения. Но как может исчезнуть момент количества движения? Ведь он подчиняется закону сохранения. Правильно, не может. Поэтому цилиндры на нитке начали вращаться. Момент количества движения, на этот раз обычного механического движения, оказался равным теоретически рассчитанному моменту, пропорциональному, как мы и говорили, произведению напряженности электрического поля и магнитной индукции. Теперь приходится признать, что электрическое и магнитное поля, направленные перпендикулярно друг другу, обладают магнитной индукцией.