Выбрать главу

Что же такое химическая энергия? Ответить на этот вопрос, значит, по существу объяснить, почему мир именно таков, каков он есть, и нам придется ненадолго обратиться к истории физики.

ГЛАВА4

Химическая энергия

Резерфорд и Бор

К концу прошлого века ни у кого из серьезных физиков не оставалось сомнений в том, что все тела состоят из атомов, а все разнообразие окружающего нас мира обеспечивается разлжчными сочетаниями простейших веществ-—элементов. Элементы заняли подобающие им места в периодической таблице Менделеева. Менделеев установил также, что химические и физические свойства элементов изменяются периодически по мере возрастания1 их атомного веса. В 1897 году Дж. Дж. Томсоном был открыт электрон, и сразу стало ясно, что электроны входят в состав всех атомов. Однако считалось, что атомы представляют собой твердые шарики. Тот же Томсов предложил свою «кекеовую» модель строения атома, согласно которой электроны в атоме вкраплены в положительно заряженное вещество, примерно как изюминки в тесто.

В 1909 году английский физик Эрнест Резерфорд, работая в Манчестерской лаборатории, закончил свой исторический цикл экспериментов. Тонкие металлические листочки оа облучал альфа-частицами, получающимися при распаде радия. Как и следовало ожидать, большинство альфа-частиц беспрепятственно проходило сквозь листочки. Но главное не это. Отдельные альфа-частицы все же отскакивали от листочка и поворачивали вспять.

О чем свидетельствовал этот факт? Внутри металлического листочка есть нечто, отталкивающее от себя альфа-частицы. Это нечто, по всей вероятности, заряжено положительно, потому что альфа-частицы заряжены положительно, а отталкиваются одноименные заряды. Это нечто должно быть относительно невелико, потому что из общего потока альфа-частиц лишь ничтожная их часть испытывает отталкивание.

Так появилась планетарная модель атома Э. Резер-форда. Положительно заряженное нечто было объявлено атомным ядром. Из того, что ядро относительно невелико (сейчас известно, что размеры ядра составляют примерно одну стотысячную долю от расстояния между ядрами), следовало, что электроны не вкраплены в ядро, как полагал Томсон, а вращаются вокруг него точно так же, как планеты вращаются вокруг Солнца.

Но тут возникло непреодолимое препятствие. Согласно всему тому, что ученые знали об электричестве, заряд, движущийся с ускорением, должен излучать электромагнитные волны, а значит, постепенно терять свою энергию. Движение по окружности или по эллипсу — это движение с ускорением. Электрон в планетарной модели Резерфорда обязан был излучать электромагнитные волны и постепенно, теряя энергию, падать на ядро. Ничего подобного не наблюдалось. Это побудило Резерфорда к собственной модели относиться с известной долей недоверия.

Летом 1912 года Нильс Бор, молодой сотрудник Резерфорда, уезжал домой в Копенгаген на собственную свадьбу с Маргарет Норвунд. Перед самым отъездом на семи листах, подклеенных друг к другу, он составил памятную записку, в которой делился с учителем своими идеями. Записка не понадобилась, потому что перед отъездом Бору предоставилась возможность поговорить с Резерфордом и лично сообщить ему свои соображения. Но памятная записка сохранилась в архиве Бора. В ней, в частности, Бор указал, что место, занимаемое каждым элементом в таблице Менделеева, определяется не атомным весом, как считалось тогда, а зарядом ядра. Элементы с различными атомными весами могут занимать одну и ту же клетку таблицы Менделеева, если заряды их ядер одинаковые. Много позже подобные элементы получили название изотопов, т. е. занимающих одно и то же место. Не атомный вес, а электрический заряд ядра ответствен за физико-химические свойства элементов, а следовательно, за все разнообразие мира.

В той же записке, правда не совсем еще в явной форме, Бор высказал мысль о том, что среди всех возможных орбит электронов в ядре существуют особые стационарные орбиты, находясь на которых электрон не излучает энергию. Это такие орбиты, при движении по которым момент количества движения электрона равен целому числу, помноженному на постоянную Планка. Эти числа получили название квантовых чисел.

В 1913 году в трех статьях Бор оформил свои предположения и сформулировал количественную теорию. Теория Бора объясняла многие из накопившихся к тому времени экспериментальных фактов, в том числе распределение спектральных линий. В результате в физике создалось поистине невыносимое положение. С одной стороны, многочисленные экспериментальные подтверждения боровской теории заставляли относиться к ней серьезно. С другой стороны, оставался все тот же проклятый вопрос: почему не излучает электрон, движущийся с ускорением, хотя бы и по избранным, стационарным орбитам? Бор лишь провозгласил правило, но не дал ему никакого объяснения.