Но вот беда — в природном уране изотоп уран-235 содержится в ничтожно малом количестве. В основном природный уран содержит изотоп уран-238, очень неохотно расщепляющийся при взаимодействии с нейтронами. Поскольку уран-238 и уран-235 изотопы, они обладают одинаковыми химическими свойствами. Различить их по химическим свойствам невозможно, единственное отличие — масса ядра. Физики знают хороший способ разделения ядер с различными массами. Образуют струю ионизированных ядер (вещество распыляется) и эту струю пропускают сквозь магнитное поле. В магнитном поле заряженные ядра отклоняются, причем более легкие отклоняются на больший угол, так как у них меньше; инерция. Прибор, работающий по этому принципу, называется масс-спектрографом.
Согласитесь, что набирать 20 кг урана-235 по одной ■ молекуле — задача нереальная. Поэтому основную часть усилий, связанных с созданием атомной бомбы, затратили на изыскание способов разделения изотопов урана. Снова секрет без секрета. Итак, что означало раскрыть секрет атомной бомбы? Окончательно поверить в то, что ядро — это не твердый шарик и ведет оно себя не как кирпич, а как радиоприемник. Поверить, а не узнать, потому что теоретикам все это было известно. Затем требовалось найти подходящий материал, что не представляло особого труда, и наконец найти способы разделения изотопов урана. Все это давно позади, а мы с вами постараемся уяснить, откуда берется энергия при расщеплении ядра.
Нуклоны
В квантовой физике действует закон сохранения, с которым мы уже знакомы. Это закон сохранения электрического заряда, который гласит: при процессах (говорят, реакциях) исчезновения и рождения частиц сумма электрических зарядов до реакции должна быть в точности равна сумме электрических зарядов после реакции. Электрический заряд нейтрона — нуль. Сумма плюс единицы (протон) и минус единицы (электрон)
также равна нулю. Закон сохранения заряда удовлетворяется, а значит, ничто не запрещает нейтронам исчезать, а протонам и электронам рождаться. Вот они и исчезают и рождаются. Не забывайте только, что распадаются лишь свободные нейтроны. Нейтроны, входящие в состав ядер, устойчивы.
В каждом атомном ядре имеются и протоны и нейтроны. У легких ядер количество нейтронов в ядре примерно равно количеству протонов, например, знаменитые альфа-частицы (ядра гелия), содержащие два протона и два нейтрона. Количество протонов определяет заряд (зарядовое число), а следовательно, и химические свойства элемента. Заряд ядра соответствует месту данного элемента в периодической таблице Менделеева, и поэтому его называют также атомным номером. Общее количество нуклонов определяет массу ядра (массовое число). Ядро урана, к примеру, содержит 92 протона. Его заряд равен 92, и занимает уран 92-ю клетку в таблице Менделеева. Всего в ядре урана 238 нуклонов (имеется в виду изотоп уран-238). Значит, в ядре урана на 92 протона приходится 146 нейтронов.
Почему протоны ядер, несущие на себе одноименные заряды и, следовательно, отталкивающиеся друг от друга с гигантскими силами, учитывая малость расстояния между ними, не разлетаются в разные стороны? Вопрос этот достаточно помучил физиков в свое время. Он был снят, когда окончательно, в том числе и опытным путем, было доказано, что нуклоны способны взаимодействовать друг с другом на расстоянии с помощью особого поля, в корне отличного от электромагнитного и получившего название поля сильных взаимодействий. Это поле в несколько миллионов раз мощнее электромагнитного. Поэтому применительно к нуклонам в ядре можно забыть об электромагнитном отталкивании и считать, что между ними действуют лишь сильные взаимодействия.
Под влиянием сильных взаимодействий все нуклоны притягиваются друг к другу, причем два нейтрона притягиваются точно так же, как протон с нейтроном или как два протона. Правда, поле сильных взаимодействий проявляется на ничтожно малых расстояниях, порядка 10-13—Ю-12 см. Стоит, скажем, двум протонам оказаться разнесенными на расстояние, большее чем Ю-11 см, как поле сильных взаимодействий перестает быть заметным и остается электромагнитное взаимодействие, которое растолкнет протоны в разные стороны.
Истинное устройство атомных ядер прояснилось позже устройства атома. Поэтому удалось обойтись без вопросов типа: почему нуклоны, притягиваясь столь сильно, не падают друг на друга? Они не падают друг на друга по той простой причине, что не могут оказаться в одной и той же точке пространства. Устройство ядра в той же степени, как и устройство атома, вытекает из соотношения неопределенностей. Каждый нуклон и все они, вместе взятые, занимают определенное пространство. Нуклоны массивнее электронов, обладают гораздо большей энергией и, следовательно, большим количеством движения. Поэтому пространства им нужно значительно меньше, чем электронам (произведение из неопределенности координаты на неопределенность количества движения не может быть меньше постоянной Планка, помните?). Радиус атомного ядра равен примерно 1,4-Ю-13 см умножить на корень кубический из общего числа нуклонов. Эта цифра хорошо совпадает с тем, что было измерено еще Резерфордом.