Выбрать главу

Изотопы

Существует несколько элементов и изотопов, объединяемых пвд общим названием «радий». Радий С имеет всего 214 нуклонов, из них 83 протона. Распад радия С может происходить двумя путями. В первом случае ядро радия С расстается с одним электроном (такое тоже возможно — испускание электронов называется бета-распадом) и превращается в другой элемент — радий С', имеющий 214 нуклонов, из которых 84 протона. Испускание электрона ядром всегда сопровождается увеличением на единицу атомного номера и, следовательно, смещением элемента на одну клеточку в таблице Менделеева вправо — это правило смещения.

Во втором случае ядро радия С испускает альфа-частицу и превращается в радий С", имеющий 210 нуклонов, из которых 81 протон. Испускание альфа-частицы сопровождается уменьшением атомного номера на 2 и смешением элемента на две клеточки влево в таблице Менделеева.

Все эти факты служат экспериментальным подтверждением того, что отдельный протон или альфа-частица может покинуть ядро, хотя их энергия ни в какой момент не превышает потенциального барьера. Протон как бы прорывает туннель в потенциальном барьере. Такие явления и называют туннельным эффектом. Туннельный эффект совершенно невозможен с позиций классической, физики, тем не менее наблюдается он довольно часто. Вероятность самопроизвольных распадов атомных ядер измеряют периодом полураспада, т. е. промежутком времени, в течение которого распадается ровно половина от первоначально взятого количества ядер.

Период полураспада радия С равен всего 10~6 с, т. е. одной миллионной доле секунды. Период полураспада радона составляет 3,8 суток. А период полураспада ура-на-238 равен 4,4 • 109 лет. Есть элементы, распадающиеся еще медленнее. Например, период полураспада тория составляет 1,8-1010 лет, рубидия — 4,3-10" лет, самария— 1,2-1012 лет и, наконец, калия — 1,3-1013 лет. Вы, наверное, не знали, что обычный калий — радиоактивный элемент. Не знали потому, что распадается он весьма медленно и заметить его распад можно при наличии очень точных приборов и в результате длительных наблюдений.

Снова лесенка

Почему периоды полураспада так сильно отличаются друг от друга? Дело в том, что нуклоны в ядре, как и электроны в атоме, не могут принимать любые значения энергии. Как для электрона в атоме, для нуклона з ядре имеется лесенка разрешенных уровней. Мы снова сталкиваемся с универсальностью законов квантовой физики. Среди различных уровней, опять-таки как и для электронов в атоме, имеются уровни, соответствующие основным и возбужденным состояниям ядра. Но есть и отличия.

Возбужденный электрон в атоме всегда может перейти в основное состояние, излучив квант энергии. В ядре при определенных конфигурациях возможны лишь возбужденные состояния. Такие ядра называются возбу-

146 жденными. Перейти в основное состояние, т. е. в состояние с меньшей энергией, возбужденное ядро может, расставшись либо с несколькими протонами, либо с электроном. Этот переход и называется радиоактивностью. Чем больше возбуждено ядро, тем с большей вероятностью совершается его распад. Какие ядра самые устойчивые? Те, у которых выдерживается определенное соотношение между количествами протонов и нейтронов.

Легкие ядра — такие, у которых протонов примерно столько, сколько нейтронов, а тяжелые ядра — такие, у которых протонов немного меньше, чем нейтронов.

5 Но особенно важно четное или нечетное число протонов и нейтронов. Самые стабильные ядра те, у которых и число протонов и число нейтронов четное. Их называют четно-четные. Пример — уран: число протонов — 92 (четное), число нейтронов — 146 (тоже четное). Менее стабильны четно-нечетные и нечетно-четные ядра. Наконец, самые нестабильные ядра те, у которых и число протонов и число нейтронов нечетное. Вот и получается, что примерно из девятисот известных на сегодня ядер (как разбухла таблица Менделеева!) только 280 являются стабильными.