Похоже, что мы наконец разобрались, как происходит распад ядра урана. Когда вблизи ядра урана-235 оказывается нейтрон, обладающий подходящей энергией, он захватывается ядром. Этот захват сам по себе чрезвычайно интересен. Происходит он как угодно, но не потому, что нейтрон двигался в направлении ядра или, иначе, нейтроном выстрелили в ядро. Здесь совершенно не годится образ кирпича, в который попадает пуля. Захват нейтрона происходит в результате некоего внутреннего сродства нейтронной волны и «частоты», на которую настроено ядро. Явление это чисто квантовомеханическое. Так или иначе, но нейтрон захватывается, и количество нуклонов в ядре увеличивается на единицу.
«Все понятно! — скажете вы.— Только что захваченный нейтрон и представляет собой как бы последнюю каплю, переполняющую чашу». Скажете, и будете неправы. После захвата нейтрона структура ядра меняется. Ядро оказывается менее стабильным. Менее стабильное (возбужденное) ядро затем распадается самопроизвольно, причем распад происходит через некоторое время после захвата нейтрона. Этот промежуток времени достаточно мал по нашим масштабам и в то же время достаточно велик по масштабам атомов. Как говорил Нильс Бор, за этот промежуток времени ядро успевает забыть о захваченном нейтроне. Оно распадается точно так, как распадалось бы обычное ядро изотопа урана, уран-236. Снова можно сказать, что здесь действуют те же законы, что и законы, по которым возбужденный электрон в атоме возвращается в основное состояние, излучая квант электромагнитной энергии.
Разные ядра
Энергия связи, приходящаяся на один нуклон, различна у различных элементов. Самая маленькая энергия связи у нуклонов ядра дейтерия — тяжелого изотопа водорода, состоящего из одного протона и одного нейтрона. Энергия связи здесь равна всего 1,09 МэВ. Энергия связи у ядра трития 2,78 МэВ. Следующим идет гелий, у которого энергия связи, приходящаяся на один нуклон, равна 7,03 МэВ. Для всех ядер со средними атомными весами энергия связи на один нуклон имеет приблизительно одно и то же значение, равное 8,9 МэВ. При дальнейшем увеличении атомных весов энергия связи уменьшается, достигая у урана величины 7,5 МэВ.
Попробуем сделать вывод о том, как должны протекать реакции деления ядер. Пусть, например, ядро урана расщепляется на два осколка примерно одинаковой массы. У этих осколков энергия-связи выше, а следовательно, полная энергия каждого нуклона ниже, чем полная энергия тех же нуклонов в ядре урана. Значит, расщепление ядра урана должно сопровождаться выделением энергии. Так происходит на самом деле. Это мы знали и раньше, но только теперь получили возможность до конца разобраться в сути происходящего.
Наоборот, у легких элементов энергия связи увеличивается с увеличением атомного номера. Поэтому при расщеплении, например, ядра гелия на два ядра дейтерия никакая энергия не выделяется. Получаются два ядра с меньшей энергией связи и, следовательно, большей полной энергией нуклонов. Реакция расщепления ядер гелия — реакция эндотермическая. При расщеплении ядер элементов с атомными номерами примерно от 30*$о до 75-го энергия не выделяется и не поглощается. Это, конечно, в среднем. А вообще возможны исключения из такого правила, поскольку у каждого элемента есть изотопы и ядра этих изотопов могут быть более или менее возбужденными, т. е. располагать большими или меньшими дополнительными запасами энергии.
Чтобы завершить наше знакомство с миром атомных ядер, вернемся к природе сильных взаимодействий. Итак, существует поле сильных взаимодействий. В свое время мы определили поле как пространство, в каждой точке которого действует сила. Правда, мы высказывали сомнения в правомочности самого понятия силы. Эти сомнения должны еще более укрепиться после знакомства с тем, что происходит в ядре. Если на каждый нуклон действует сила притяжения к другим нуклонам, то почему эта сила не удерживает нуклоны в ядрах радиоактивных элементов? Не говоря уже о том, что по самому своему определению каждая сила должна иметь точку приложения, а применительно к нуклонам понятие точки не имеет смысла.
Ранее в этой книге мы рассматривали электромагнитное и гравитационное поля как потоки частиц — квантов или фотонов. Подобная точка зрения позволила нам ответить на много вопросов и, в частности, понять, как отдельные объекты могут действовать друг на друга на расстоянии. Представление о фотонах позволило ответить на вопрос о том, почему энергия передается от одного объекта к другому только целыми порциями.