Выбрать главу

Это бы еще полбеды. Энергия, затраченная на подогревание, вернется к нам с лихвой. Хуже другое. Водород, нагретый до температуры в десятки миллионов градусов, не удержишь ни в каком сосуде. Из чего бы ни были сделаны стенки такого сосуда, они мгновенно испарятся. А водород при соприкосновении со стенками охладится, и реакция прекратится.

Посмотрите на экран телевизора. Наверное, все знают, что изображение на экране телевизора «рисует» тончайший пучок электронов. Электроны вылетают из одного раскаленного катода или из трех катодов (у цветной телевизионной трубки). В пучок диаметром несколько долей миллиметра их собирает магнитное поле, образующееся в фокусирующей системе. Эта же идея используется в созданной в нашей стране установке «Токомак» для управляемого термоядерного синтеза. При температуре 100 млн. градусов все атомы теряют свои электроны и водород превращается в плазму, содержащую только заряженные частицы. С помощью магнитного поля эти частицы собирают в пучок или тонкий шнур, который не соприкасается со стенками сосуда. Но электронный пучок в телевизоре в конце концов упирается в экран. Чтобы такого не случилось с электронным шнуром, сосуд, в котором он образуется, имеет форму тора — баранки без начала и без конца. До нужной температуры плазменный шнур нагревается электрическим током. В последнее время начали использовать для разогрева плазмы лазеры, о которых речь пойдет в следующей главе.

На установках «Токомак» в нашей стране и в США выполнено много успешных наглядных экспериментов. Но к сожалению, до промышленного освоения управляемого термоядерного синтеза еще очень далеко. Плазменный шнур неустойчив, да и нагреть его до температуры 100 млн. градусов (все-таки 100 млн.!) не так-то просто. Ученые, однако, не теряют надежды. А как заманчиво! Освоив термоядерный синтез, мы получим в полном смысле этого слова неисчерпаемые запасы энергии. Важно и то, что продуктом реакции термоядерного синтеза является обычный, не радиоактивный гелий.

Подводя итоги, скажем, что атомная энергия очень напоминает химическую. И та и другая выделяются в результате реакций. И в том и в другом случае количество выделяемой энергии равно разности между энергетическими уровнями исходных веществ и продуктов реакций. Наконец, и в том и в другом случае выделение энергии происходит в достаточной мере беспорядочно.

ГЛАВА 6

Энергия высшего качества

Солнечный зайчик

Приятно проснуться тихим солнечным утром от того, что по щеке скользнул солнечный зайчик. Тот самый солнечный зайчик, который, как говорится в одной песенке, не линяет даже весной, когда линяют всякие звери. Крохотным осколком зеркала можно запустить солнечный зайчик, например, в окно к приятелю. Солнечные зайчики — один из самых древних способов передачи информации. Но вот беда! Солнечный зайчик, а в общем случае строго параллельный пучок световых лучей любого происхождения, получить легко лишь в том случае, если расстояние невелико. На больших расстояниях пучок обязательно расходится и световой луч имеет форму конуса.

Чтобы получить малорасходящийся световой пучок, пользуются зеркалами различной формы. Зеркальная поверхность, представляющая собой параболоид вращения, собирает световые лучи, исходящие от точечного источника, помещенного в фокус параболоида, в строго параллельный пучок. На этом принципе строятся отражатели мощных прожекторов и карманных фонариков. И снова беда в том, что, во-первых, не существует точечных источников света, а во-вторых, не существует зеркал с идеальной поверхностью. Поэтому даже луч прожектора всегда расходится.

Откуда вообще берутся световые лучи? Чем объясняются законы их преломления и отражения? Причиной появления света всегда являются электроны, входящие в состав атомов и молекул. Вы знаете, что ядра и электроны в атомах связываются между собой электромагнитными полями, образуя сложную систему. Система эта обладает запасом энергии, складывающимся в основном (если не считать внутриядерной энергии) из энергий отдельных электронов. Энергия электрона в основном сосредоточена в его электромагнитном поле. Поля отдельных электронов складываются, значит, складываются и их энергии. Поэтому правильнее говорить, что энергией обладает весь атом, точнее, его электромагнитное поле, хотя при различных расчетах иногда удобнее учитывать вклад каждого электрона по отдельности.