Выбрать главу

Все это можно было предвидеть. По самой сути рассматриваемого эффекта при каждом вынужденном переходе атома из одного энергетического состояния в другое образуется один фотон со строго определенной энергией. Полная энергия, выделяемая мазером, зависит от количества атомов, совершающих вынужденные переходы, а оно, в свою очередь, при прочих равных условиях зависит от плотности вещества. Значит, мазеры на основе твердого тела должны быть мощнее, чем газовые?

Три уровня

Но вот тут-то и возникает одно очень важное обстоятельство. Пока нам известен единственный способ создания инверсии населенностей. Общий запас энергии, накопленный веществом, складывается из запасов энергии отдельных атомов. Именно такой запас имеют в виду, когда говорят, что атом находится в данном энергетическом состоянии. Чем выше полная энергия вещества, тем больше энергии в среднем приходится на один атом. Если нагревать вещество, подвергать его воздействию электрических разрядов, заставлять несколько веществ вступать в химические реакции или любым другим способом повышать общий запас энергии, то повышается и средняя энергия, приходящаяся на один атом. Ведь температура есть не что иное, как величина, пропорциональная средней энергии одной частицы — молекулы, атома или электрона.

Но как бы ни была велика средняя энергия, приходящаяся на одну частицу, если выделить два каких-то значения энергии, вероятность для частицы принимать состояние с более низким значением энергии, если оно вообще возможно, всегда выше, чем вероятность принимать состояние с более высоким значением. А коли так, то среди возможных уровней энергии более населенными оказываются те, которые характеризуются меньшими значениями энергии. Или, проще говоря, частиц с меньшей энергией всегда больше, чем частиц с большей энергией.

«Ленивость» природы — одно из фундаментальных ее свойств, поэтому с самого начала мы даже не мечтали как-то изменить распределение частиц по энергии. Мы сразу пошли по пути механического разделения, т. е. из общего количества атомов отбирали те, которые в данный момент характеризуются состоянием с высокой энергией. Ну а как быть, если надо построить мазер на твердом теле? Ведь твердое — оно на то и твердое, что его нельзя разделять на отдельные частицы. А закон природы на то и закон, что его нельзя нарушать.

Поступим так. Среди всех возможных для одного какого-нибудь атома уровней энергии выделим два. Уровень 1—это уровень, соответствующий основному состоянию атома, а уровень 2 — возбужденному состоянию. Если долго наблюдать за одним атомом, то рано или поздно можно увидеть, что он переходит в возбужденное состояние. Однако в силу того же закона природы возбужденное состояние не является естественным состоянием атома и независимо от того, есть на то внешняя причина или нет, он возвращается в основное состояние, испустив при этом квант энергии.

Но произойдет это не сразу. Атом находится в возбужденном состоянии довольно долго, конечно, по атомным масштабам, в среднем от Ю-6 до Ю-3 с. Ему надо как бы набраться решимости, перед тем как соскочить вниз. Возбужденные состояния принято называть метастабильными, что в переводе на разговорный язык; означает «вроде как бы устойчивые». Какова бы ни была полная энергия вещества, в любой момент времени определенное число его атомов всегда находится в ме-тастабильном состоянии. Достаточно пролететь мимо такого атома фотону подходящей частоты, происходит вынужденное излучение и вместо одного фотона оказываются два когерентных, или два близнеца.

Приблизились мы хоть на шаг к решению основной задачи создания мазера на твердом теле? С сожалением должны признаться: нет, не приблизились! Независимо от того, являются возбужденные состояния метастабильными или нет, населенность низших энергетических уровней все равно больше, чем населенность верхних, а значит, акты поглощения фотонов преобладают над актами вынужденного излучения.

Не станем, однако, отчаиваться. А если взять схему не с двумя, а с тремя уровнями? Один из уровней — основной (уровень 1), а два остальных (уровни 2 и 3) соответствуют возбужденным состояниям атома, причем уровень 3 характеризуется большей энергией по сравнению с уровнем 2. Предположим, по той или иной причине атом оказался в состоянии 3. Через какой-то промежуток времени он с большой степенью вероятности перейдет в состояние 2. С большой степенью вероятности опять же потому, что, чем меньший энергетический скачок предстоит, тем охотнее он делается.