Выбрать главу

Для чего же все это делается? Если мы нальем в термос горячую жидкость и заткнем его пробкой, то куда денется тепло? Окружающий воздух не нагреется – тепло не пройдет через безвоздушную прослойку между колбами. Излучиться в пространство, как излучается оно Солнцем или раскаленным металлом, тепло тоже не может – зеркальный слой отражает тепловые лучи, как свет, снова внутрь колбы. А внешняя колба позеркалена для того, чтобы тепловые и солнечные лучи снаружи не попали внутрь и не нагрели содержимого, на случай, если в термосе находится холодная вода или мороженое. Поэтому термос одинаково хорошо сохраняет первоначальную температуру как холодных, так и горячих тел. Говорят, что он теплоизолирует их от окружающей среды. Тепло может «утечь» или «притечь» только через тоненькую «шейку», соединяющую обе колбы, или через пробку. А пробка очень плохо передает тепло.

Изобрел этот хитрый сосуд в самом конце прошлого века английский ученый Джеймс Дьюар, и в честь него термос называют еще сосудом Дьюара.

Вот куда надо бы помещать сжатый газ, чтобы он не охлаждался, сохранял свое тепло подольше. Но сосуд Дьюара, рассчитанный на огромные давления аккумулятора, станет очень сложным и дорогим; как говорится, игра здесь просто не будет стоить свеч.

Зачем же вообще помещать туда газ, да еще сжатый? Ведь значительно большее количество энергии можно накопить в заранее нагретых телах помассивнее, чем газ, например в жидкостях, их и сжимать для этого не надо. Тогда давление нам уже не помешает, и сосуд Дьюара будет иметь свой обычный вид.

Килограмм сжатого до 500 атмосфер газа, как я подсчитал раньше, может накопить 50 килоджоулей энергии. А литр воды, имеющий массу тоже килограмм, как известно, при нагревании всего на один градус накопит 1 большую калорию тепла, что соответствует механической энергии в 4,2 килоджоуля. Если же нагреть литр воды с 0 до 100 градусов, то в воде накопится энергии в 8 раз больше, чем при сжатии килограмма газа в 500 раз!

Все это показали несложные расчеты, которые я в свое время на уроках в школе делал, откровенно говоря, довольно неохотно. Но теперь результат буквально ошеломил меня. Вот где надо искать настоящую «энергетическую капсулу»! Даже обыкновенная вода, нагреваемая до столь невысокой температуры, запасает огромное количество энергии. А что могут дать другие, новые материалы, которые, возможно, гораздо лучше воды накапливают тепло?

Мысли о новых теплоемких материалах отныне не покидали меня ни на минуту. Я жил в предвкушении сенсационных открытий.

Секреты плавления

В мечтах уже виделся сияющий кусочек неведомого пока материала, нагретый до чудовищной – в миллионы градусов – температуры. Этот кусочек, вобравший в себя гигантское количество тепловой энергии, помещен в жароупорный «термос». Чтобы не расплавились стенки сосуда, кусочек «подвешен» в магнитном поле внутри «термоса»...

Эту фантастическую картину я рисовал моему школьному товарищу, когда мы до глубокой ночи провожали друг друга по домам. А он жестоко и методично разбивал мои мечты одну за другой.

Во-первых, говорил он, при температуре свыше трех-четырех тысяч градусов почти все вещества превращаются в пар. Пара же в термосе много не уместишь. Во-вторых, столь высокую температуру не выдержит не только сосуд Дьюара, но и любой другой сосуд – он расплавится или сгорит.

Твердые или жидкие тела останутся в прежнем состоянии, если их нагревать до одной – полутора тысяч градусов, не более. Но при такой температуре они уже не подчиняются магниту, в магнитном поле их не «подвесишь». Можно, конечно, «подвешивать» небольшие количества расплавленного металла в высокочастотном электромагнитном поле, где металл поддерживается в расплавленном виде энергией поля. Однако потери электроэнергии на «подвешивание» здесь очень велики, для «энергетической капсулы» это не подходит.

Напомнил мне друг и о том, как мучаются физики-ядерщики, пытаясь хоть на краткий миг «запереть» сверхгорячую материю в магнитном поле, и что из этого пока мало что получается. А у меня, дескать, и подавно ничего не выйдет. Большее, на что я могу рассчитывать, это накалить докрасна камни, как в русской бане, а затем «извлекать» из них энергию, поливая водой. Пар же можно направить и в паровую машину и...

Меня злили доводы друга, хотя я понимал, что он прав. Но где же выход? Мечты об «энергетической капсуле» рассеивались как дым. Я лег спать в раздумьях, и мне снилась русская баня...

А утром произошло следующее. Выйдя на кухню, я увидел в кастрюле на газу плавающие в кипятке какие-то странные предметы – зеленые и все в шипах. Оказалось, это термобигуди, которыми пользуются для укладки волос. Нагретые в кипятке, такие бигуди долго-долго остаются горячими. Да это же почти то, что нужно, – накопитель тепла!

Я выпросил одну «бигудину» и бросил в кипяток вместе с равными ей по массе кусочками дерева, пластмассы и металла. Затем одновременно вынул их и оставил стынуть. Поразительно, но «бигудина» сохраняла тепло в несколько раз дольше своих соседей. Не доверяя пальцам, я проверил это даже небольшим электротермометром, который взял в школьном физическом кабинете.

Проделывая опыт многократно, я заметил, что «бигудина» в отличие от других образцов, остывала весьма необычно. Сначала температура ее падала довольно резко. Потом, дойдя до 50...60 градусов, держалась так очень долго. Затем «бигудина» опять резко остывала до комнатной температуры.

Тут я не удержался и вскрыл «бигудину», чтобы посмотреть, что за механизм у нее внутри. Но там, кроме какой-то пастообразной массы, ничего не оказалось. Это был парафин или стеарин, из которых делают обыкновенные осветительные свечи. Чудеса!

Я купил килограмм парафина, расплавил его и залил в термос. В другой такой же термос я поместил воду, одинаково с парафином нагретую. Результат был прежний. Когда вода уже остыла, парафин в термосе все оставался горячим и жидким. Наконец он затвердел, а после этого остыл быстро, почти как вода. Вода простояла горячей около дня, а парафин – несколько дней.

И вдруг меня осенило. Конечно же, при отвердевании жидкости выделяется «скрытая» энергия, которая была затрачена при плавлении! Когда жидкость остывает, тепло постоянно отбирается от нее, но пока вся она не затвердеет, пока останется хоть капля жидкости, температура ее будет держаться на точке плавления. Для парафина это – 54 градуса.

И наоборот, температура плавящегося тела, например льда, не поднимается ни на градус, пока последний его кусочек не расплавится, не превратится в жидкость. Все это я проходил в школе, обо всем этом написано в учебниках.

Оказывается, чтобы расплавить килограмм льда, нужно затратить 80 килокалорий, алюминия – 92,4, железа – 66, свинца – 6,3, ртути – 2,8 килокалории. А есть материалы – к примеру, гидрид легкого металла лития, – которые требуют для плавления гораздо большего тепла. Так, чтобы килограмм твердого гидрида лития перешел в жидкость при температуре его плавления – 650 градусов, потребуется 650 килокалорий.

Посмотрим теперь с точки зрения аккумулирования тепла. Предположим, что нам нужна температура в аккумуляторе между 700 и 600 градусами, например, чтобы получить из воды пар для питания парового автомобиля. Воспользуемся для этой цели куском металла, железом или медью. При остывании с 700 до 600 градусов каждый килограмм железа или меди выделит около 10 килокалорий. Если то же проделать с гидридом лития, то только при затвердевании на точке 650 градусов он выделит 650 килокалорий. А дополнительно, остывая с 700 до 600 градусов, – еще 30 килокалорий. Итого – 680 килокалорий, или в 68 раз больше, чем может дать неплавящийся металл! Это ли не «капсула»?