Выбрать главу

Medicinal and Aromatic Plants — Industrial Profiles

Vanilla

Edited by Eric Odoux and Michel Grisoni

This book is dedicated to the memory of Dr. Miguel Angel Soto Arenas (1963–2009)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. 

Cover photos:.

Left: Curing of mature pods of Vanilla planifolia © Michel Grisoni, CIRAD.

Right: Vanilla planifolia in full bloom © René Carayol, Région Réunion.

Series Preface

There is increasing interest in industry, academia, and the health sciences in medicinal and aromatic plants. In passing from plant production to the eventual product used by the public, many sciences are involved. This series brings together information that is currently scattered through an ever-increasing number of journals. Each volume gives an in-depth look at one plant genus about which an area specialist has assembled information ranging from the production of the plant to market trends and quality control.

Many industries are involved, such as forestry, agriculture, chemical, food, flavor, beverage, pharmaceutical, cosmetic, and fragrance. The plant raw materials are roots, rhizomes, bulbs, leaves, stems, barks, wood, flowers, fruits, and seeds. These yield gums, resins, essential (volatile) oils, fixed oils, waxes, juices, extracts, and spices for medicinal and aromatic purposes. All these commodities are traded worldwide. A dealer’s market report for an item may say “drought in the country of origin has forced up prices.”

Natural products do not mean safe products, and account of this has to be taken by the above industries, which are subject to regulation. For example, a number of plants that are approved for use in medicine must not be used in cosmetic products.

The assessment of “safe to use” starts with the harvested plant material, which has to comply with an official monograph. This may require absence of, or prescribed limits of, radioactive material, heavy metals, aflatoxin, pesticide residue, as well as the required level of active principle. This analytical control is costly and tends to exclude small batches of plant material. Large-scale, contracted, mechanized cultivation with designated seed or plantlets is now preferable.

Today, plant selection is not only for the yield of active principle, but for the plant’s ability to overcome disease, climatic stress, and the hazards caused by mankind. Methods such as in vitro fertilization, meristem cultures, and somatic embryo-genesis are used. The transfer of sections of DNA is leading to controversy in the case of some end uses of the plant material.

Some suppliers of plant raw material are now able to certify that they are supplying organically farmed medicinal plants, herbs, and spices. The Economic Union directive CVO/EU No. 2092/91 details the specifications for the obligatory quality controls to be carried out at all stages of production and processing of organic products.

Fascinating plant folklore and ethnopharmacology lead to medicinal potential. Examples are the muscle relaxants based on the arrow poison curare from species of Chondrodendron, and the antimalarials derived from species of Cinchona and Artemisia. The methods of detection of pharmacological activity have become increasingly reliable and specific, frequently involving enzymes in bioassays and avoiding the use of laboratory animals. By using bioassay-linked fractionation of crude plant juices or extracts, compounds can be specifically targeted which, for example, inhibit blood platelet aggregation, or have antitumor, antiviral, or any other required activity. With the assistance of robotic devices, all the members of a genus may be readily screened. However, the plant material must be fully authenticated by a specialist.

The medicinal traditions of ancient civilizations such as those of China and India have a large armamentarium of plants in their pharmacopoeias that are used throughout Southeast Asia. A similar situation exists in Africa and South America. Thus, a very high percentage of the world’s population relies on medicinal and aromatic plants for their medicine. Western medicine is also responding. Already in Germany all medical practitioners have to pass an examination in phytotherapy before being allowed to practice. It is noticeable that medical, pharmacy, and health-related schools throughout Europe and the United States are increasingly offering training in phytotherapy.

Multinational pharmaceutical companies have become less enamored of the single compound, magic-bullet cure. The high costs of such ventures and the endless competition from “me-too” compounds from rival companies often discourage the attempt. Independent phytomedicine companies have been very strong in Germany. However, by the end of 1995, 11 (almost all) had been acquired by the multinational pharmaceutical firms, acknowledging the lay public’s growing demand for phyto-medicines in the Western world.

The business of dietary supplements in the Western world has expanded from the health store to the pharmacy. Alternative medicine includes plant-based products. Appropriate measures to ensure their quality, safety, and efficacy either already exist or are being answered by greater legislative control by such bodies as the U.S. Food and Drug Administration and the recently created European Agency for the Evaluation of Medicinal Products based in London.

In the United States, the Dietary Supplement and Health Education Act of 1994 recognized the class of phytotherapeutic agents derived from medicinal and aromatic plants. Furthermore, under public pressure, the U.S. Congress set up an Office of Alternative Medicine, which in 1994 assisted the filing of several Investigational New Drug (IND) applications required for clinical trials of some Chinese herbal preparations. The significance of these applications was that each Chinese preparation involved several plants and yet was handled as a single IND. A demonstration of the contribution to efficacy of each ingredient of each plant was not required. This was a major step toward more sensible regulations with regard to phytomedicines.

My new book series “Traditional Herbal Medicines for Modern Times” (CRC Press) has included some important examples of Chinese and Japanese formulae, commonly of three to six dried herbs and now available as tablets or water soluble granules for the treatment of cardiovascular disease (Vol. 1) or liver disease (Vols. 3 and 7) or to relieve the adverse effects of Western anticancer drugs (Vol. 5). Other books have covered Ayurvedic herbs and Rasayana (Vol. 2); antimalarial plants (Vol. 4); antidiabetic plants (Vol. 6); cosmetic plants (Vol. 8) and figs (Vol. 9). More are in preparation.

To return to the present series and particularly the topic of vanilla, James A Duke, in his Handbook of Medicinal Plants of Latin America (CRC Press, 2009) has given the medicinal uses of the tinctures and decoctions of the pods, stems and roots of this plant (pages 733–735).

This volume, Vanilla, edited by Eric Odoux and Michel Grisoni, is outstanding in that it is the first comprehensive volume on the subject in English. I am very grateful to them for all their hard work and to the contributors of the 24 chapters for their authoritative information. My thanks are also due to Barbara Norwitz and her staff, including production coordinator Jessica Vakili, for their unfailing help.