Выбрать главу

Таким образом, работающая на лопастях СИМ представляет собой активно вращающийся газовый «парашют» с реактивным сопротивлением движению вдоль своей оси, не позволяющий вертолету неприемлемо быстро снижаться после отказа двигателей на висении или малых скоростях полета. Особенно эффективной СИМ может оказаться для 5-8-лопастных НВ вертолетов за счет суммарного роста секундного количества движения газовой струи.

Чтобы обосновать свой вывод, приведем предварительные результаты расчета создания и применения СИМ НВ вертолета, выполненного с целью выяснить возможность полного энергетического замещения его отказавших двигателей твердотопливными малогабаритными газогенераторами.

Допустим, планируется установить комплект лопастей с СИМ на вертолет Ми-14ПС, имеющий следующие характеристики:

— мощность двигателей — 2x1950 л.с.;

— номинальная мощность — 2x1700 л.с.;

— номинальные обороты НВ — 192 об. /мин;

— диаметр НВ — 21,29 м;

— количество лопастей — 5 шт.;

— вес одной лопасти — 135 кг;

— нормальный взлетный вес — 13400 кг.

В расчете принимались или определялись

следующие значения различных параметров:

— увеличение веса вертолета в зависимости от размещения СИМ <= 0,5 %;

— увеличение веса лопасти <= 9-10 %;

— вес твердого топлива в одном газогенераторе <= 8 кг (78,5 Н);

— крутящий момент на втулке НВ при 192 об./мин от двух двигателей, работающих на номинальном режиме, М=1027299,3 кгс-см (100778 Н-м) при коэффициенте использования мощности 0,81;

— относительный радиус начала размещения сопел на лопасти с учетом темпа нарастания индуктивной воздушной скорости по длине лопасти r = 0,55;

— секундный массовый расход газа распределялся так: 93 % направлялось в сопла (150 шт., 14x5 мм) вдоль задней кромки; 7 % — в сопла (10 шт., 14x5 мм) торцевой части лопасти;

— угол выдува струй вдоль задней кромки θ = 30°;

— средняя скорость истечения газа из сопел на расчетном режиме (Ра = Рн) с учетом коэффициента скорости φ и V рдтт= 0,8(2500+2800)/2 == 2120 м/с;

— относительный радиус точки приложения равнодействующей газовых сил с учетом действия центробежных сил на проходящий внутри лопасти газ r = 0,85;

— равнодействующая газовых сил, действующих вдоль задней кромки на одну лопасть, R = 261 кгс.

В результате получено время t=6,1 с, в течение которого пять газогенераторов, работающих на максимальном режиме до полной выработки 8 кг твердого топлива, создают крутящий момент, равный крутящему моменту, идущему на НВ от двух двигателей.

Выполним простейшую энергетическую проверку расчета. Два двигателя вертолета расходуют при взлете и установке режима G взл= 13000 кгс на уровне моря, 15 кг керосина за 1 минуту, то есть 0,25 кгс/с. Для его полного сгорания необходимо 3,9 кгс/с воздуха. В сумме расход рабочего тела =4,2 кгс/с. Расход всех РДТТ PC на максимальном режиме равен: 5 шт. х 8 кгс/6,1 с = 6,6 кгс/с. Сравнивая расходы (4,2 кгс/с и 6,6 кгс/с) и учитывая более высокий КПД турбовального двигателя по сравнению с РДТТ PC (особенно в компоновке СИМ), делаем вывод — расчет достоверен.

Насколько полезными могут оказаться для летчика эти 6,1 с пока виртуального дополнительного полета? Для оценки обстановки и предпосадочного маневра резерв в 6 секунд — «море» времени. Например, известному летчику. Герою России Анатолию Квочуру даже одна дополнительная секунда помогла бы избежать жесткого приземления после катапультирования на малой высоте и скорости из-за отказа одного из двигателей самолета…

Теперь о полезности резерва времени 6,1 с применительно к пилотированию вертолета. Из практики полетов известно, что при выключении двигателей на высотах 300–500 м на режимах, близких к номинальным, обороты НВ к исходу второй секунды падают на 15–20 % и начинают медленно расти, достигая наибольшей величины на режиме самовращения через 8-12 с. В этом случае включать СИМ в принципе не нужно, но при ошибке в технике пилотирования или для подстраховки можно включить и, увеличивая темп роста оборотов и тягу НВ, не допустить подхода к высоте 25–15 м с недораскрученным НВ на опасной вертикальной скорости. По данным летных исследований, потеря высоты для вертолетов Ми-6 и Ми-8 при выключении двигателей на скоростях, близких к экономическим, составляет соответственно 220–230 м/с и 110–130 м/с.

По разности высоты выключения двигателей и потери высоты видим, что начиная с высот выключения 300–500 м и ниже при посадке на ВПП у летчика сначала почти нет запаса высоты на исправление возможной ошибки, затем он равен нулю и далее запас высоты становится отрицательным. Это означает, что выключение двигателей произошло в опасной зоне, что безопасность посадки не гарантирует даже идеальная техника пилотирования. Еще жестче будет развиваться аварийная ситуация при посадке вне ВПП. Здесь резерв времени в 6,1 с «моторного» полета практически дает шанс экипажу на благополучное завершение полета.

Установлено, что время от момента выключения двигателей вертолета на высоте 3 м до момента приземления составляет 3–4 с, в течение которых летчик не успевает сбросить общий шаг для поддержания оборотов и произвести «подрьге» НВ перед посадкой.

Теоретические расчеты показывают, что максимальная высота висения, с которой возможно планирование с последующей посадкой, ограничена верхним порогом переносимой летчиком вертикальной перегрузки, составляющим 8-10 м.

Время до приземления с учетом ускоренного снижения вертолета составляет около 5–6 с. При отказе двигателей на висении выше 8-10 м летчик и вертолет при жестком приземлении могут не выдержать вертикальной перегрузки. Включение СИМ за 3–7 с до приземления поможет предотвратить аварию или катастрофу. Время оптимального «подрыва» НВ вертолета Ми-8, близкого по летно-техническим характеристикам к Ми-14ПС, при наклонном планировании составляет t подр=2,5–3,5 с, что позволяет погасить вертикальную скорость V y= 11 — 12 м/с.

Если включить СИМ за 3–4 с до «подрыва», то при наличии прогнозируемого улучшения аэродинамических характеристик лопастей за счет вьдува газовых струй можно погасить и большую вертикальную скорость без потери устойчивости вращения НВ и управляемости вертолета (например, потеря устойчивости и управляемости может наступить при падении оборотов более чем на 20–28 % у вертолета Ми-8) и при наличии подходящей посадочной площадки уверенно приземлиться.

В пользу рассмотрения вопроса о разработке СИМ может служить и тот факт, что в начале 50-х годов в США и Великобритании были созданы и прошли летные испытания комбинированные вертолеты, то есть ЛА, способные осуществлять вертикальные взлет и посадку (как вертолеты) и длительный горизонтальный полет (как самолеты). Ротор таких ЛА не имел механического привода, как это обычно делается на вертолетах. Воздух высокого давления, поступающий от компрессора двигателя через втулку ротора и далее через всю лопасть, подавался к небольшим реактивным соплам, установленным на законцовках ротора. При горизонтальном полете реактивные сопла лопастей отключаются и ротор функционирует аналогично тому, как это происходит на автожирах.

В качестве примера можно привести английский «Ротодайн» фирмы «Фэйри» — 40- местное пассажирское воздушное судно с двумя ТВД мощностью 3000 л.с., взлетным весом 14970 кг, крылом площадью 53,94 м² и вертолетным ротором диаметром 27,45 м. Ясно, что использование внутреннего объема лопасти для прохождения воздуха (газа в случае устройства СИМ), достаточного, чтобы выполнить вертикальную посадку, — технически осуществимо. А значит, у СИМ увеличивается шанс быть установленной на лопастях НВ вертолета несмотря на очевидные конструктивные и технологические трудности ее создания и летной эксплуатации.