Многих из нас раздражают ограничения, связанные с жизнью в многолюдных муравейниках, которые мы называем городами. Раздражают рабская зависимость от часовой стрелки, заботы и волнения. У некоторых бунт выливается в правонарушения, в «антиобщественное поведение». Другие ищут пустынные уголки Земли, где можно вести жизнь робинзонов.
Но если нашим «муравейникам» суждено выжить, то нам понадобятся и люди, которые будут жить их интересами: не станут ходить по газонам, бить светофоры и вываливать мусор на тротуары. Тут уж можно положиться на тех, кто страдает нарушением обмена веществ, потому что они не могут позволить себе бороться с обществом, которому фактически обязаны жизнью. Диабетик не будет тосковать по широким просторам, — там ему негде будет возобновить запас инсулина.
А если это так, то демон Дарвина делает лишь то, что естественно.
Но из всех сред самая неустойчивая и хрупкая — это, по-видимому, среда, созданная современной сложной техникой. В нынешнем своем виде наше общество существует не более двухсот лет, а дальнейшее его существование могут решить несколько ядерных бомб.
Разумеется, эволюция проявляет себя в длительные периоды времени, и двух столетий далеко не достаточно, чтобы вырастить Homo technikos (человек эпохи техники. — Ред.).
Разрушение нашего зависящего от техники общества в припадке ядерного неистовства было бы губительным даже в том случае, если бы многие миллионы людей остались в живых.
Среда, к которой мы приспособились, исчезла бы, и демон Дарвина, не задумываясь, беспощадно стер бы человечество с лица Земли.
12. Высота самого высокого
Большинство из нас считают поверхность Солнца довольно горячей. Судя по типу ее излучения, температура ее равна примерно 6 тысячам градусов.
Однако Homo sapiens с его маленькими горячими руками может добиться и более высоких температур. При взрыве атомной бомбы легко достигается температура выше 100 тысяч градусов.
Но для природы и это, конечно, не предел. Температуру солнечной короны оценивают примерно в 1 миллион градусов, а температуру центра Солнца — примерно в 20 миллионов градусов.
И эту температуру человек перекрыл. При взрыве водородной бомбы развивается температура примерно 100 миллионов градусов.
И все-таки природа превысила эту рекордную температуру: центральные области некоторых очень горячих звезд (Солнце — лишь среднетеплая звезда), как свидетельствуют оценки, могут достигать температур до 2 миллиардов градусов.
Два миллиарда градусов — температура значительная (даже по сравнению с температурой самого жаркого дня в Нью-Йорке). Но вот вопрос: до каких пределов она может расти? Есть ли у нее потолок?
Иными словами, как горячо самое горячее?
Это все равно что спросить: как высоко самое высокое? И я не стал бы тратить время на такие вопросы, если бы в нашем XX веке кое-что из самого высокого уже не было тщательно определено.
Например, в добрые старые времена ньютоновской физики считалось, что скорость не имеет предела. Вопрос «какова быстрота самого быстрого» не знал ответа. Появился Эйнштейн, который выдвинул положение, ныне признанное всеми, что скорость света — это максимально возможная скорость и равна она 299 779 километрам в секунду. Ныне считают, что это и есть быстрейшее из быстрых.
Так почему же не говорить и о наивысшей температуре?
Мне хочется заняться этим вопросом еще и потому, что можно по ходу дела затронуть проблему различных температурных шкал, а ее обсуждение было бы, бесспорно, полезно для читателя.
Например, почему я придерживался температурной шкалы Кельвина, приводя цифры в предыдущих абзацах? Была бы какая-нибудь разница, если бы я воспользовался другой температурной шкалой? Если бы была, то какая и почему? Ну, что ж, давайте выясним.
Измерение температуры — дело новое, известное всего лет триста пятьдесят. Чтобы прийти к измерению температуры, нужно было сначала осознать, что существуют явные физические особенности, изменяющиеся более или менее плавно в соотношении с нашими субъективными ощущениями перемены от «холодного» к «теплому». А коль скоро такое свойство замечено и измерено количественно, мы можем заменить субъективное «что-то жарко становится» объективным «термометр показывает на три градуса больше». Одна из самых подходящих физических особенностей, которую, наверное, замечали случайно очень многие люди, — это способность вещества при нагревании расширяться, а при охлаждении сжиматься. Первым, однако, кто попытался использовать ее для измерения температуры, был итальянский физик Галилео Галилей. В 1603 году он опустил перевернутую пробирку с нагретым воздухом в чашу с водой. Охладившись до комнатной температуры, воздух сжался, и вода в пробирке поднялась. Галилей сразу сообразил, в чем дело. Уровень воды продолжал меняться вместе с изменениями комнатной температуры. Воду выталкивало вниз, когда воздух в пробирке нагревался и расширялся, и втягивало в пробирку, когда воздух в ней охлаждался и сжимался. Так Галилео создал термометр (что по-гречески значит «измеритель тепла»). Единственным его недостатком было то, что воздух имел доступ в чашу с водой, а атмосферное давление то и дело менялось. Это тоже заставляло уровень воды то подниматься, то опускаться независимо от температуры и путало расчеты.