Выбрать главу

х2 + рх + q = 0,

ибо, если коэффициент при х2 не равен единице, делим вес уравнение на этот коэффициент — и дело в шляпе! Как быть далее? А что, если уничтожить второй член уравнения с иксом в первой степени? Тогда останется икс в квадрате и свободный член, а нам как «раз и надо получить двучленное уравнение. Введем новую неизвестную, допустив, что наш икс таков:

x = y + h.

— А что такое h? — с удивлением спросил Илюша.

— Пока что h совершенно произвольное число, но мы сейчас выясним точно, в каком виде оно может нам помочь. Подставим в уравнение новое значение икса и сделаем приведение. Это нетрудно! Получаем:

(y + h)2 + p (y + h) + q = 0;

y2 + y (2h + p) + h2 + hp + q = 0.

Теперь становится ясно: чтобы уничтожить второй член уравнения, надо положить, что коэффициент при иксе в первой степени равен нулю, то есть:

2h + р = 0;

h = — p/2

Подставим в полученное уравнение. Получаем:

y2 + y (—2p/2 + p) + p2/4 — p2/2 + q;

после приведения:

y2 = p2 / 4 — q

— 431 —

по так как х + у = h, то находим и решение:

x = — p/2 ± √(p2/4 — q)

Следовательно, наш этот способ — уничтожить один из членов уравнения — вполне целесообразен. Теперь попробуем разобрать, как было решено впервые алгебраически, или, как говорится, «в радикалах», то есть с помощью извлечения корней необходимой степени, кубическое уравнение. Сделано было это в шестнадцатом веке в Италии учеными города Болоньи Ферро, Тарталья и Кардано. Между двумя последними шел долгий спор о том, кто первый сделал это открытие, но мы в эти ненужные споры забираться не будем, тем более что с современной точки зрения все решение не так уж сложно.

— А все-таки, наверно, трудно… — грустно заметил Илюша.

— Не очень! Конечно, поскольку само кубическое уравнение сложнее квадратного, то весь ход решения похитрей. Но тут дело в том, что выясняются некоторые особые подробности… Итак, у нас имеется кубическое уравнение, где коэффициент при старшем члене уже превращен в единицу:

х3 + ах2 + + с = 0.

Цель снова будет та же самая: придумать такие преобразования, чтобы превратить данное уравнение в уравнение с меньшим числом членов, ибо, как мы видели на примере квадратного, этот прием упрощает задачу. Сперва мы будем поступать так же, как с квадратным уравнением. Положим снова:

х = у + h

и подставим это в наше уравнение. Получим после небольших переделок

у3 + (3h + а) у2 + (3h2 + 2ah + b) у + h3 + ah2 + bh + с = 0.

Теперь снова постараемся обратить коэффициент второго члена (при игреке в квадрате) в нуль, то есть положим, что

(3h + a) = 0; h = — a/3,

откуда

у3 + (—3a/3 + а) у2 + (3a2/9 — 2a2/3 + b) у + h3 + ah2 + bh + с = 0.