⅓(x1 + αx2 + α2x3)
— Совсем я запутался! — с огорчением пробормотал Илья. — Чем эта формула поможет? Откуда взять корни, когда я еще не решил уравнения? Значит, надо сперва воспользоваться формулой Кардана. Какой смысл в этой формуле?..
— Видите ли, — вмешался Мнимий, — вы правы в том отношении, что в деле разыскания корней эта формула помочь не может. Но чтобы представить себе, как связаны корни кубического уравнения с его коэффициентами, она в высшей степени полезна.
— Опять не понимаю! — снова огорчился мальчик. — Ведь мы же знаем, какие для Кардановой формулы делали два раза подстановки! Разве из этого нельзя вывести, какие получаются соотношения между корнями и коэффициентами?
— Того, что мы знаем о наших подстановках, еще мало. Потому что те подстановки, которые годятся для кубического уравнения, не подходят для уравнения четвертой степени, а следовательно, это способ не общий. Кроме того, пока самый способ решения нельзя проверить — или, как говорится, проанализировать, — невозможно подойти и к рассмотрению всего вопроса в целом об алгебраических уравнениях. Ведь мало еще догадаться, каково решение, надо дознаться, почему оно такое, а не иное.
— Возьмем квадратное уравнение, — предложил Радикс, —
— 449 —
хорошо тебе известное. Что ты скажешь, если я предложу тебе для него такую формулу? Ты с ней согласишься?
x = 1/2[(x1 + x2) ± (x1 — x2)]
— Д-да… — сказал Илюша неуверенно. — То есть если припомнить общую формулу квадратного уравнения
(x1 + x2)(x1 — x2) = 0,
потом открыть в ней скобки
x2 — (x1 + x2)x + x1x2 = 0,
а затем применить к такому выражению всем известную формулу, для решения квадратного уравнения, то как раз и придешь к твоей формуле. И действительно, она показывает, как формула решения связана с корнями. Но ведь в квадратном уравнении все так просто!
— Боюсь, — вымолвил Мнимий, — что вас пугают эти самые альфы в формуле Лагранжа. Не так ли? А ведь мы о них недавно говорили… Вспомните-ка!
— Говорили…
— А что именно?
— Что с их помощью получаются все значения корней из комплексного числа…
— Разве? — сказал удивленный Радикс. — Как же это возможно? Мыслимое ли это дело?
Илюша посмотрел на своего друга укоризненно.
Что-то очень маленькое и беленькое вдруг упало у ног Илюши, а потом пошел целый снег из этих маленьких беленьких… Одна штучка упала Илюше прямо на руку, и он увидал, что на ладошке у него лежит крохотная беленькая альфа. А кругом так и сыплются все новые и новые маленькие беленькие альфы…
А Мнимий посмотрел на эту альфообразную метель и признался:
— А ведь в самой своей сущности я тоже альфа!
Илюша взглянул на него и сказал:
— Когда мы разбирали пример Бомбелли, я, кажется, понял, что под корнями в формуле Кардана стоят сопряженные комплексные числа… Ну вот, отсюда и альфы, чтобы получать один за другим все значения корня из комплексного числа! Теперь я как будто разобрался. Значит, Лагранж дал
— 450 —
формулу Кардана не просто в виде результата двух подстановок, а так, как она складывается из самых корней.
И тут альфовый снежок стал стихать.
— Так-с… — произнес наставительно Мнимий. — Это похоже на дело. Но теперь на минутку давайте снова вернемся к квадратному уравнению. Вы этого не бойтесь! Поверьте, что все те крупные ученые, которые это разбирали, тоже не раз вспоминали о квадратном уравнении. Так вот вам еще один вывод для формулы решения квадратного уравнения, причем чрезвычайно полезный. Нам ведь хорошо известно, что по формулам Виеты сумма корней квадратного уравнения (х2 + рх + q = 0) равняется коэффициенту при неизвестном в первой степени с обратным знаком, то есть: