— Хорошее озеро Сенеж! — мечтательно произнес Радикс.
— Самая симпатичная станция Московского метро — это «Лермонтовская»! — поддержал его Коникос.
— Да-а! — заметил Асимптотос. — Две с половиной тыся-
— 252 —
чи рублей и девятнадцать копеек — это, что ни говори, хорошие деньги!
— Постой! — сказал вдруг Илюша. — Я понял: машиниста звали Борей.
— Враки! Ничего подобного! Ошибка! Переделать задачу наново! Безобразие! — заорал не своим голосом взбешенный Уникурсал Уникурсалыч.
— Задача решена правильно, — сказал сердито Радикс. — Зачем ты его путаешь? Как тебе не стыдно!
— Вранье! — еще громче закричал Доктор Нечетных.
Тут поднялся такой страшный крик, что ничего понять было невозможно, и как автор ни старался прислушаться, он не мог разобрать, кто тут прав, а кто виноват. Так что уж придется читателю самому разобраться, как звали этого молодчагу машиниста. Я уверен, что он с этим справится. Ясно, ясно, что справится!
— 253 —
Схолия Четырнадцатая,
посвященная самым возвышенным чудесам и до крайности загадочная, ибо хотя в ней снова толкуется о сырах, но сыры эти до такой степени замысловаты, что тех, кто их придумал, неоднократно и совершенно всерьез обзывали безумцами, а так как это делалось печатно, то отчасти напоминало ругань. Речь идет всего лишь о том, как купить себе полчасика сыру, да кстати еще и о том, как поступил бы король Альфонс Кастильский, если бы он присутствовал при сотворении мира. Затем вслед за таинственным появлением дивных древних теней мы видим одну забавную веревочку двухтысячелетней давности, одну особу весьма несложного устройства и аппарат, который понимает положительное и отрицательное совершенно по-своему и в особом смысле, хотя речь идет всего лишь о фисташковой скорлупе и самых обыкновенных кавалерийских седлах, а также о том, каким именно гигиенически-геометрическим телом надлежит пользоваться по утрам благонравным малюткам, и о некоем мире, где нет надобности в мерах длины.
Справедливость, однако, заставляет старательного автора этой правдивой книжки сообщить читателю еще следующее: дело в том, что — внимание! внимание! внимание! говорит ВОЛШЕБНЫЙ ДВУРОГ! — необыкновенные, неслыханные чудеса этой ослепительной схолии суть чудеса не простые, а особые. А особенность их заключается в том, что их сразу трудно разглядеть, они сперва кажутся совершенно неуловимыми! По этой причине всякий из наших прилежных
— 254 —
и усидчивых читателей, кто столкнется с этим странным явлением, должен поступить очень просто: прочесть эту трогательную схолию еще раз и еще раз, дабы наконец разобраться, как идут дела в том самом удивительном мире, где никогда ничего подобного не бывает!
Илюшины приятели и наставники так громко спорили друг с другом, с таким жаром доказывали, что врать не должно, но ставить в тупик в высшей степени похвально, что Илюше стало скучно, и он потихоньку выбрался из домика Асимптотоса. Пахучий воздух, красивые купы вечнозеленых растений и тишина словно обступили его со всех сторон. Неподалеку снова раздались знакомые звуки флейты, и козлоногий Фавн выскочил из-за кустов. Наконец он опустил свои флейточки и оглянулся на домик Асимптотоса, откуда в то время донесся крик доктора У. У. Уникурсальяна: «А я, напротив того, буду утверждать, что то, что не невозможно, тем самым и является основным и даже единственным прототипом общеобязательного!..» Фавн поманил Илюшу немного подальше и, нагнувшись к самому его уху, торопливо начал шептать:
— У них еще есть! Что есть — боюсь сказать. Но то же… вроде… Тесс! Молчок! Дело в том, что у них, видишь ли, есть еще… особые сорта голландского. Один называется альмагестическим сыром. Это давнишний сыр, традиционный, легендарный, многозвездный, покровитель мореходов, любимый сыр звездочетов, пока, разумеется, они еще не знали того, шотландского сыра. А сверх того еще один сыр, необыкновенный, якобы круглый… Называется — казанский.
— Казанский? — переспросил Илюша с удивлением.
— В этом городе сварили такой сыр, что самые серьезные люди называли этого дивного сыровара Коперником геометрии! Это был второй Евклид. И представь себе, что эти сыры измеряют не на килограммы, потому что это и устарелый и неостроумный способ. На километры тоже неудобно — очень длинно! Долго они думали над этим вопросом. Пробовали мерить мегомами, атмосферами, люксами, кулонами, лошадиными силами, грамм-молекулами, большими калориями — и все как-то не получалось. Но когда Коникос умножил одну секунду на шестьдесят в квадрате, то вышло в самый раз.