Выбрать главу

— Да, как будто ясно, — отвечал мальчик.

Илюша внимательно осмотрел получившийся у Коникоса кусок сферы, но сперва не обнаружил во всем этом ничего интересного. Разрезали шар на восемь частей — что же тут особенного? Иной раз так и арбузы режут…

— Я думаю, — заявил Илюша приглядевшись, — что этот кусок сферы образует с плоскостью, на

— 257 —

которой он лежит, только прямые углы. Угол А прямой (смотри на картинку!), угол В прямой, и угол С тоже прямой! Следовательно, поверхность шара- сфера, — разрезанная таким образом, дает треугольник, сумма углов которого равняется трем прямым углам. Но как же это может быть? Ведь в настоящем треугольнике сумма углов равна двум прямым углам!.. Впрочем, это треугольник кривой, а если его растянуть на плоскости…

— А ну попробуй растяни! — сказал Асимптотос, приподняв свой треугольник и подавая его Илюше. — Только не рвать!

Илюша начал растягивать, но оказалось, что этот странный треугольник не хочет растягиваться. Когда Илюша нажал на него покрепче, он выгнулся в другую сторону, как зонтик под сильным ветром, но растягиваться не соглашался.

— Вот как, Илюша! — сказал Радикс. — Учил ты, учил планиметрию, а как до трех прямых дошло, так и запутался!

Ты прими во внимание: все, что ты учил о треугольниках, правильно, пока они на плоскости. И там все евклидовы теоремы правильны. Так и говорится: «евклидова геометрия».

А на шаре мы получаем не-евклидову геометрию. Если взять огромный шар и рассматривать маленькие треугольники, то чем шар больше, тем ближе их геометрия приближалась бы к евклидовой. Если бы радиус шара был безгранично велик, тогда бы и на его поверхности Евклид оказался прав. А на данной сфере в таком треугольнике сумма углов зависит от его площади, тогда как на плоскости это величина постоянная и равна 2d. А это сферический треугольник, но не плоский.

— И существует, — добавил Коникос, — особая сферическая тригонометрия, которая весьма необходима мореплавателям и астрономам. Она даже появилась на свет ранее обычной в одном астрономическом сочинении Клавдия Птолемея, так называемом «Альмагесте», написанном около сто тридцатого года вашей эры в Александрии.

«Так, так, так! — подумал Илюша. — Вот почему Фавн говорил об альмагестическом сыре и прямых углах!»

— До Коперника, — продолжал Коникос, — это было самое серьезное и самое авторитетное сочинение по астрономии. Европейцы узнали его в арабском переводе, и под этим араб-

— 258 —

ским названием «Альмагест» оно и стало известно. Именно там и изложена геоцентрическая теория Птолемея. Настоящее заглавие этого сочинения — «Великое построение математическое». Оно несомненно заслуживает такого названия, ибо долгое время служило на пользу людям.

— Но ведь это же было неверно, — сказал Илюша, — раз он считал, что в центре нашей системы находится Земля, а не Солнце? Мне вспоминается, что у Ломоносова есть даже стихи по этому поводу…

— Какие такие стихи? — спросил Гадикс.

— Постой-ка, сейчас вспомню, — отвечал мальчик. — Ага… вот как:

Случились вместе два астронома в пиру И спорили весьма между собой в жару.
Один твердил: Земля, вертясь, круг Солнца ходит; Другой — что Солнце все с собой планеты водит. Один Коперник был, другой слыл Птолемей. Тут повар спор решил усмешкою своей.
Хозяин спрашивал: «Ты звезд теченье знаешь? Скажи, как ты о сем сомненье рассуждаешь?» Он дал такой ответ: «Что в том Коперник прав, Я правду докажу, на Солнце не бывав.
Кто видел простака из поваров такого, Который бы вертел очаг кругом жаркого!»

— Возможно, это и так, — отвечал Асимптотос, — в том смысле, что с физической точки зрения естественней считать центром системы Солнце, а все-таки службу «Альмагест» сослужил немалую. И без него было бы не так-то просто построить современную систему. Но система «Альмагеста» уже тем нехороша, что она чересчур сложна. Планета двигалась у Птолемея вокруг Земли не просто по кругу, а по некоторому небольшому кругу, а центр этого круга, в свою очередь, катился по другому, большому кругу, в центре которого находилась Земля. Круги вертелись в разные стороны, да еще с переменной скоростью. Если составить карту звездного неба и нарисовать на ней путь движения какой-нибудь планеты на фоне неподвижных звезд («планета» ведь и значит «блуждающая звезда»), то окажется, что он представляет собой кривую, которая образует петли. Планета двигается в определенном направлении, затем начинает опускаться, потом как бы идет назад, в «обратном направлении», снова поворачивает и, описав таким образом петлю, вновь начинает двигаться в том же примерно направлении, с которого мы начали.