— Значит, Демокрит раньше теоремы своей уже знал это решение? — спросил заинтересованный Илюша.
— Возможно, что и так. Возможно и обратное. Может быть, он сперва вывел свою теорему, а потом проверил ее на опыте. Но еще более вероятно, что он узнал ее от слесаря, кузнеца или медника, которые благодаря своему ремеслу сталкивались с такого рода соотношениями уже не раз. Кстати сказать, теорема эта была доказана со всей необходимой строгостью гораздо позже Демокрита. Весь вопрос заключался в том, чтобы вывести это — такое простое на вид — соотношение теоретически. И я не знаю, с чего начал Демокрит: атомистическая ли теория привела его к этому решению или это решение привело его к мысли об атомах.
— Как это интересно! — воскликнул Илюша. — Значит, у них и физика, и философия, и геометрия — все было вместе?
— Конечно. Над входом в одну греческую академию было написано: «Да не входит сюда никто, кто не знает геометрии!»
— А как Демокрит решил эту задачу?
— Решил он ее вот как. Он предположил, что конус можно весь разрезать на очень тоненькие кружочки, если резать параллельно основанию, то есть на цилиндрики с очень малой высотой. Правило, по которому изменяется диаметр кружков, вывести не очень трудно. Мы этого пока еще делать не будем, так как сейчас речь не о выводе формулы, а о способе рассуждения, с помощью которого ее можно вывести. Теперь допустим, что цилиндриков не только очень много и толщина их ничтожно мала, но что число их безгранично увеличивается, а толщина тем же порядком уменьшается. Конус заменяется ступенчатой фигурой из кружков. Конечно, это ступенчатое тело не есть конус, но чем дальше я буду уменьшать толщину кружков, которых будет накопляться все больше и больше,
— 316 —
тем меньше это ступенчатое тело будет отличаться от конуса.
Допустим, что высота конуса равна 500 мм, а цилиндрики, на которые его режем, сделаны из бумаги, толщина которой примерно равна 0,05 мм, следовательно, всего в конусе их будет десять тысяч. Вряд ли такой конус, склеенный из десяти тысяч листов бумаги, можно отличить от сделанного, скажем, из гипса. А так как объемы цилиндров определить нетрудно, то таким путем мы определим и объем конуса.
Конус разбивается на маленькие цилиндры.
— Что-то я плохо понимаю, — грустно сказал Илюша.
— Ничего! Не падай духом! Слушан хорошенько и понемногу поймешь, — подбодрил его Радикс. — Ясно, что когда я заменяю маленький усеченный конус маленьким цилиндром, то делаю ошибку. Но эта ошибка, вычисленная в процентном отношении к измеряемой величине (так называемая «относительная ошибка»), будет сколь угодно мала. Ведь можно взять настолько тонкие кружки, что объем, которым я пренебрегаю, составит, например, менее одной десятой, либо сотой, либо тысячной процента и так далее по отношению к объему конусика (или цилиндрика; считай как хочешь, это неважно). Но раз это так, то нетрудно сообразить, что если суммировать цилиндрики, то и искомый объем большого конуса тоже будет с той же относительной ошибкой, то есть менее одной десятой, либо сотой, либо тысячной процента и так далее по отношению к истинному объему. Следишь ли ты за развитием моего рассуждения?
Усеченный конус и цилиндр.
— Да-да! — ответил поспешно мальчик. — Слежу и пока, кажется, все понимаю.
— Приятно слышать. Ну, слушай далее! Итак, если конус высотой в метр делить на кружки, толщина которых равна одному микрону, то есть тысячной доле миллиметра, то велика ли — опять-таки в процентах! — будет разница между объемом кружка и объемом усеченного конусика, на которые делится конус, если действовать совершенно точно?
— Нет, — ответил Илюша. — Раз каждый кружок будет толщиной в микрон, то наверно разницу-то и заметить будет невозможно.
— Справедливо, — отвечал Асимптотос. — Но ведь у нас нет надобности резать на самом деле конус на кружки, нам достаточно только вообразить это, ибо мы это делаем только для рассуждения, а если так, то никто не мешает нам допустить, что мы будем разрезать каждый кружок в тысячную долю миллиметра толщиной еще на миллион сверхтончайших кружков. Как ты тогда обнаружишь разницу между объемом кружка и элементарного усеченного конусика? А ведь в рассуждении я могу повторять мое деление на миллион еще любое число раз. Этот метод деления объема на крайне малые объемы
— 317 —
назывался в древности «методом исчерпания», ибо такими крохотными объемами мы как бы «исчерпываем» данный объем.
— Значит, — сказал Илюша, — мы будем все делить и делить, и «высота-толщина» цилиндрика-кружка будет изменяться…