— Как и полагается переменной величине! — сообщил многозначительно Радикс.
— Ну да, — отвечал Илюша, — конечно, если она все время меняется, то ясно, что это величина переменная. И так она изменяется, уменьшаясь и приближаясь, — я думаю, здесь можно сказать — к некоторому пределу?
— Разумеется, — отвечал Асимптотос, — так сказать не только можно, но даже и должно. Но вот вопрос: к какому именно пределу стремится эта твоя «высота-толщина»?
— Мне кажется, — осторожно произнес Илюша, — что если она будет уменьшаться все больше и больше, то естественно, что пределом ее будет нуль.
— А мы уже говорили в Схолии Двенадцатой, — заметил Радикс, — что если переменная величина имеет своим пределом нуль, то мы называем ее бесконечно малой. А это обозначает, что какое бы малое положительное число ни задать, в течение ее изменений наступит момент, начиная с которого ее абсолютная величина станет и будет оставаться меньше этого числа.
— Это я понимаю, — отвечал Илюша. — Но ведь это еще не все. А что же делается в это время с числом кружков-цилиндриков?.. Мне кажется, что число их в это время растет безгранично.
— Разумеется. Однако не забудь о том, что я собираюсь получить при помощи такого деления на кружки вовсе не приближенный объем конуса, а совершенно точный! Ведь мы действительно убедились с тобой, что в процентном отношении к искомому объему разница может быть сделана сколь угодно малой, если мы будем уменьшать толщину цилиндриков. Убедились мы также и в том, что если в каждом слагаемом мы сделаем ошибку меньше тысячной процента, то при вычислении всей суммы общая ошибка не может превысить того же самого процентного отношения. Не так ли? Тебе все здесь ясно?
— Как будто так, — отвечал Илюша. — То есть этот множитель-ошибка при суммировании просто выйдет за скобку?
— Ну разумеется! А теперь сообрази-ка, что же получится в пределе. Разницу между истинным объемом конуса и суммой можно сделать меньше 0,001, или меньше 0,000001 процента, то есть одной миллионной, или меньше
— 318 —
0,0000000000000000001, то есть одной десятиквинтиллионной процента.
— Постой-ка! — воскликнул Илюша. — А нельзя ли изображать и десятичные дроби через отрицательные степени «десяти»?
— Разумеется, можно. 101 будет 10; 10-1 — единица, деленная на 10, то есть 0,1, ибо,
10-1 = 10n / 10n+1 = 1 / 10 = 0.1
а следовательно, 10-2 будет 0,01, и так далее.
— А тогда, — сказал Илюша, — эти проценты я запишу так: вместо 0,000001 — 10-6, а вместо 0,0000000000000000001 — 10-19.
Но если делать так, то, значит, можно и здесь воспользоваться самыми громадными делителями единицы, вплоть до того невероятного архимедова числа в сто шестьдесят биллионов километров длиной, о котором мы говорили в Схолии Десятой. Слушай, Радикс! Скажи мне, пожалуйста: может быть, Архимед именно это и имел в виду, когда сочинял «Псаммит»?..
— Весьма вероятно! И очень хорошо, что ты сам теперь это понял.
— Но если, — продолжал далее мальчик, — точность суммы неограниченно возрастает за счет увеличения числа цилиндров и утончения их, то ясно, что в пределе я и получу совершенно точно искомую величину!
— Так, — отвечал Коникос. — Вот выходит, что «чем больше ошибок ты сделаешь, тем лучше окажется твой результат», ибо чем больше ошибок, тем каждая из них меньше. А отсюда ясно, что ты действительно имеешь возможность при вычислении объема конуса разбивать его на тончайшие слои и считать каждый слой цилиндром, пренебрегая теми крохотными колечками (они у нас останутся, если из каждого цилиндрика вычесть соответственный усеченный конусик), которые представляют собой бесконечно малые более высокого порядка. А это уже величины такой малости, что по сравнению с ними бесконечно малые первого порядка, о которых мы до сих пор говорили, суть величины бесконечно большие.
— А все-таки есть одна вещь, которую мне очень трудно усвоить! — вздохнул Илюша. — Как это так можно чем-нибудь пренебрегать в математике?
— Чем можно пренебрегать, а чем нельзя, мы узнаем первоначально, разумеется, из опыта. Замечательный физик и мыслитель девятнадцатого века Больцман утверждал, рас—
— 319 —
суждая о вопросах, близких к тем, о которых мы сейчас говорим, что не логика решает в конце концов, правильна ли данная система размышлений или неправильна. Решает этот вопрос дело, то есть наша человеческая повседневная деятельность. «То, что ведет нас к верному делу, — говорил Больцман, — то и есть истина». И если бы мы с помощью данных рассуждений не могли достигнуть некоторых неоспоримых практических результатов, то никогда и не могли бы установить, как же, наконец, следует рассуждать — так или иначе. Если я путем такого процесса бесконечного уменьшения слагаемых кружков получаю правильное решение, то, следовательно, и способ мой правилен.