Выбрать главу

— Так вот, оказывается, как! — воскликнул Илюша.

— Допустим, — продолжал Радикс, — что нам дано уравнение, которое показывает, какой скоростью обладает в каждый данный момент движущееся тело. Если мы сумеем сложить одну за другой все эти данные кривой моментальные скорости и получить их так называемую «начетную» кривую, то она и будет кривой пройденного пути. Могу тебе это показать на простеньком примере. Это не будет ни дифференцирование, ни интегрирование, но нечто очень похожее на то и на другое. Пусть некоторое тело движется с постоянным ускорением, равным двум сантиметрам в секунду, и пусть его средняя скорость в первую секунду равняется трем сантиметрам, а до этой секунды оно уже прошло один сантиметр. Требуется найти кривую пройденного пути. В таком случае нетрудно составить табличку. Кривая пройденного пути есть начет

— 342 —

ная кривая, то есть каждое число ее равно сумме всех предыдущих чисел кривой скорости, и, как легко заметить, она есть не что иное, как кривая квадратов натуральных чисел, то есть…

— Парабола! — ответил Илюша.

— Правильно! А наша кривая скоростей — это что, по-твоему?

— Это кривая нечетных чисел, то есть прямая.

— Верно!

— Я уже знаю, — продолжал Илюша, — что если складывать нечетные числа одно за другим, то получатся квадраты.

— Это правило было известно еще в древнем Вавилоне. Опираясь на него, Галилей и открыл, что падающие тела движутся по параболе.

— А если интегрировать линейную функцию, которая дает прямую, то получишь на чертеже параболу, — добавил Илюша.

— Вот и еще одно свойство параболы.

— И обратно, если искать производную от правой части уравнения, то получишь функцию, изображаемую на графике прямой линией. А что получится, если интегрировать уравнение параболы?

— Параболу третьего порядка, кубическую, и так далее. Но мы не будем останавливаться на этом, а поговорим об открытии Ньютона. Причем принцип, о котором мы говорим, был известен еще учителю Ньютона, замечательному английскому математику Барроу, однако значение этого принципа не было еще тогда ясно. Это было одно из самых удивительных открытий в математике. Но, мало этого, в дальнейшем выяснились еще более поразительные вещи. Оказалось, что в большинстве случаев закон изменения для бесконечно малых частиц кривой вообще гораздо проще, чем для конечных изменений! Кривая скоростей, как мы только что видели, проще кривой пройденного пути. В физике мы, изучая плотность неоднородного тела, из тех же соображений можем принимать, что в некотором неограниченном уменьшающемся кубике плотность эта остается постоянной. То же самое возможно при изучении распределения тепловой или электрической энергии, количества истекшей из сосуда жидкости и так далее. Если, например, надо вычислить длину дуги кривой, то рассматривают бесконечно малые отрезки дуги. А для бесконечно малых отрезков дуги можно считать, что на таком ничтожно малом отрезке кривая идет по прямой. А если так, то на бесконечно малом отрезке кривой строим прямоугольный треугольник, катетами которого будут бесконечно малые приращения икса и игрека, а гипотенузой — крохотный отрезок прямой, которым в бесконечно малом заменяют отрезочек