h = b / n
Вся площадь теперь разбита на трапецоиды, ширина каждого из которых равна, как уже указано, b/n, а вышину мы определяем, согласно уравнению кривой, для последовательных точек параболы, как
h2, 22h2, 32h2, … , n2h2,
ибо ясно, что если х равен h, то у будет равен h2 и так далее.
Но если это так, то площади последовательных прямоугольников, которыми мы заменяем наши трапецоиды, будут равны
hh2, h22h2, h32h2, … hn2h2.
— 351 —
Видно, что сумма прямоугольников больше, нежели сумма трапецоидов, но при безграничном увеличении числа n искомая площадь будет пределом суммы прямоугольничков, то есть пределом следующего выражения:
h(h2 + 22h2 + 32h2 + … + n2h2) = h3(12 + 12 + 22 + 32 + … + n2) = b3/n3(12 + 12 + 22 + 32 + … + n2)
А так как шахматная доска уже объяснила нам, что сумма первых и квадратов натурального ряда равна
(2n + 1)(n +1)n / 6
то мы, подставляя это выражение в предыдущую формулу, после некоторых несложных переделок получим:
b3/6 (1 + 1/n)(2 + 1/n)
Спрашивается: что будет с этим выражением, если число n будет неограниченно возрастать? Ясно, что дробь 1/n будет неограниченно приближаться к нулю и ею мы можем пренебречь. В таком случае предыдущее выражение в пределе обратится в
b3/3
что и является результатом нашего интегрирования. Знай, что это один из первых интегралов, полученных человеком, что человека этого звали Архимед и что он рассуждал примерно так, как и мы.
И тут Величайший Змий вырос снова перед ними. Он взглянул на Илюшу, и мальчику показалось, что это могущественное чудовище даже улыбнулось!
— 352 —
Схолия Семнадцатая,
в которой Илюша припоминает разные разности из предыдущих схолий, оставшиеся не совсем ясными, а Радикс рассказывает ему об истории надгробного камня Архимеда, погибшего от меча римского грабителя, о спирали Архимеда. Затем следует масса любопытнейших подробностей о веретенах, о шотландском сыре, о фокусах, которые придумали древнегреческие геометры, о том, как в старину индусы решали кубические уравнения, как в шестнадцатом веке бедный мальчик-заика учился на кладбище грамоте, а также почему у квадрата такая большая площадь и что по этому поводу думает касательная; о битве за высоту над городом Клермоном. А затем Илюша присутствует при волшебном опыте, который поясняет, что такое прямая линия и какие чудеса с ней случаются при ее путешествиях в мировом пространстве. Вслед за этим Илюша и Радикс видят нечто чрезвычайно странное… Но пока это еще страшный секрет, который, может быть, раскроется в будущем…
— Ну, теперь ты доволен? — спросил Радикс.
— Да, — сказал Илюша, — я узнал массу интересных вещей. Теперь я, кажется, понимаю, почему так уважают Архимеда и как велико могущество Змия. Но только у меня есть еще вопросы.
— Ну что ж! Давай твои вопросы. Может быть, как-нибудь вдвоем разберемся.
— 353 —
— Помнишь, ты где-то, кажется в Схолии Одиннадцатой, перечислял мне титулы Величайшего Змия? Так вот, я хотел тебя спросить о них. О площадях я теперь понял: путем интегрирования можно получить площадь любой криволинейной фигуры. С объемами я тоже как будто сообразил. Это, вероятно, делается путем суммирования бесконечно тонких слоев тела, как Демокрит считал объем конуса?
— Правильно. А сейчас мы можем закончить вывод формулы для объема конуса, о которой мы толковали в Схолии Пятнадцатой. Если рассечь конус плоскостью, проходящей через его ось, то получится треугольник. Из рассмотрения этого треугольника ты убедишься в том, что радиус основания цилиндрика, отстоящего на расстояние h от вершины, определится при помощи пропорции: