Некоторые виды атмосферных загрязнений можно наблюдать непосредственно с борта ИСЗ, но более эффективным является фотографирование земной поверхности в сочетании с анализом телевизионных изображений местности. Съемка в различных спектральных интервалах (0,4-0,5, 0,6-0,7 и 10,5 – 12 мкм) и в особенности цветное фотографирование обеспечивают получение максимума информации не только о самих загрязнениях, но и об их влиянии на растительный покров. При анализе таких изображений удается различать дымовые облака и обычные, загрязнения индустриальные и связанные с лесными пожарами, а также вызванные извержениями вулканов.
10.13. Что представляют собой очаги лесных пожаров на снимках с ИСЗ?
Лесные пожары фиксируются спутниками как шлейфы дымовых облаков в форме конусов. В августе 1972 года на снимках можно было видеть шлейфы длиной от 75 до 400 км – это горели леса в Восточной Европе. В отдельные дни одновременно фиксировалось до 40 очагов.
10.14. Как выглядят из космоса промышленные загрязнения атмосферы?
Дымовые шлейфы от заводов, морских судов и пятна дымки промышленных загрязнений могут отчетливо видеть космонавты, но систематическое их изучение возможно только по космическим снимкам, на которых четко фиксируются все очаги загрязнений вплоть до конденсационных следов, возникающих за пролетающими самолетами. Для изучения антропогенных загрязнений воздуха требуется специальная съемочная аппаратура, обладающая высокой разрешающей способностью, то есть фиксирующая все детали размером 100 м и более. Так, по изображениям, полученным с борта орбитальной станции «Салют-4» в июне 1975 года, прослеживались дымовые полосы от ГРЭС г. Ермак Павлодарской области, имевшие длину от 30 до 50 км; со спутника «Лэндсат-1» над оз. Онтарио путем многоспектральной съемки были обнаружены дымовые шлейфы промышленного центра г. Сэдбери, протянувшиеся на 70 км. Над крупными городами снимки с ИСЗ фиксируют облака загрязнений, смещенные относительно городской территории в направлении воздушных потоков в нижней тропосфере в момент фотографирования. На рис. 56 показана карта-схема загрязнения над Москвой и вертикальный профиль температуры днем 23 февраля 1976 года по данным 18-го ИСЗ «Метеор», а на рис. 57 – дымовое загрязнение атмосферы и выпадение городских загрязнений в районе Ленинграда 26 марта 1973 года. Промышленные загрязнения в районе Ленинграда, как видно на рисунке, распространились двумя полосами к югу и к юго-западу от города; ширина одной полосы 50-60 км, а другой – 15-20 км, длина каждой из них превышает 60 км. (Так бывает при неодинаковом направлении ветра на разных высотах.)
10.15. Какие ИСЗ наиболее эффективны для изучения загрязнения атмосферного воздуха?
Это зависит от программы исследований. Так, для изучения загрязнения в планетарном и региональном масштабах (так называемых мега- и макромасштабах) удобны геостационарные спутники, которые как бы неподвижно висят над экватором или ближайшими к нему широтами на очень большой высоте, а также обычные метеорологические спутники, летающие на орбитах высотой 900-1200 км и имеющие ТВ-аппаратуру; для детального исследования локального (мезомасштабного) загрязнения более подходят специальные ИСЗ изучения природных ресурсов, оснащенные аппаратурой очень высокой разрешающей способности, типа «Лэндсат».
10.16. Каковы особенности погоды в свободной атмосфере?
Как показали исследования, выполненные с помощью ракет, спутников и других средств зондирования атмосферы, на высотах, в свободной атмосфере, метеорологические условия несколько иные, чем у земной поверхности. Во-первых, там менее значительны колебания температуры воздуха, поскольку с высотой уменьшается влияние подстилающей поверхности и всех ее неоднородностей. Сама температура воздуха в свободной атмосфере ниже, чем у земли. Во всем нижнем слое атмосферы, называемом тропосферой, она понижается в среднем примерно на 6 – 7° C на каждый километр высоты. Толщина этого слоя может колебаться в зависимости от географической широты места и характера происходящих атмосферных процессов от 7 до 18 км. Выше тропосферы примерно до высоты 51 км находится второй атмосферный слой – стратосфера. Между тропосферой и стратосферой несколько сот метров переходного, или промежуточного слоя, называемого тропопаузой. На тропопаузе температура может быть от -45 до -80°C, причем с высотой она перестает понижаться и даже наоборот – немного возрастает или остается неизменной; в стратосфере она также с высотой сперва меняется очень незначительно, а затем начинает повышаться, приближаясь на ее верхней границе к 0°C. Во-вторых, в свободной атмосфере воздушные течения меньше искажаются рельефом местности и могут достигать больших скоростей, образуя так называемые струйные течения. В-третьих, там нет некоторых специфических приземных метеорологических явлений, а сама погода резко делится на два типа – внеоблачную, так сказать в ясном небе, и в облаках. Есть в свободной атмосфере и свои специфические явления погоды, такие, как турбулентность при ясном небе (ТЯН), стратосферные потепления, стратосферные облака вулканической пыли и другие.
10.17. Почему в стратосфере температура с высотой не понижается, а растет?
Температура воздуха в стратосфере определяется процессом лучистого теплообмена. Находящийся в нижней стратосфере слой озона поглощает некоторую часть солнечного тепла и нагревается, одновременно нагревая воздух. Приток тепла и его отток благодаря лучеиспусканию сбалансированы, иначе говоря, сохраняется состояние лучистого равновесия. С ним связан и процесс терморегулирования количества озона в стратосфере. Если произойдет чрезмерное нагревание воздуха, то немедленно начнется распад молекул озона и уменьшение содержания последнего, а следовательно, уменьшится и поглощение солнечного тепла; это автоматически приведет к снижению температуры до прежнего уровня.
10.18. Почему нижняя граница стратосферы не всегда расположена на одной и той же высоте?
Высота тропопаузы – переходного слоя между тропосферой и стратосферой – изменяется в зависимости от состояния воздуха под ней, то есть в тропосфере. Приближенно можно считать тропосферу слоем интенсивного перемешивания воздуха, а стратосферу – слоем с устойчивым его состоянием. В зависимости от развивающихся над земной поверхностью процессов и степени прогрева нижних слоев воздуха высота границы неустойчивости и интенсивного перемешивания может подниматься и опускаться. В теплом воздухе и над областями высокого атмосферного давления она выше, а в холодном и над циклонами – ниже. По этой причине тропопауза расположена ниже над полярными районами и выше над тропическими областями. Граница между тропосферой и стратосферой в реальных условиях над средними широтами в зависимости от ситуации может располагаться на уровнях от 8 до 13 км, а температура ее может на 7-8°C отличаться от стандартных значений (-56,5°C), при этом она будет тем ниже, чем выше окажется тропопауза.
10.19. Как высоко над земной поверхностью возникают струйные течения?
Ветер скоростью более 100 км/ч – нижний предел для струйных течений – бывает обычно в верхней тропосфере, то есть выше 6 км. Максимальные значения скорости ветра на высотах чаще всего наблюдаются на 1-1,5 км ниже тропопаузы. Поэтому принято считать, что в тропосфере ось струйного течения находится в среднем на этом уровне, под тропопаузой. Однако, как всегда и бывает со средними цифрами, это не всегда соответствует реально встречающимся условиям – могут быть ситуации, когда ось струйного течения расположена еще ниже, то есть на 2-3 км ниже тропопаузы, или же, наоборот, лежит значительно выше, даже над тропопаузой. Это бывает, когда струйное течение очень сильное (300-400 км/ч и более) и очень мощное (5-6 км и более по вертикали). Струйные течения встречаются и в стратосфере. Здесь их оси обычно располагаются на высотах 16 – 20 км и выше, где наблюдается второй максимум скорости ветра. Направление ветра в тропосфере и направление стратосферных струйных течений могут совпадать, что чаще случается в холодное время года, но могут быть и противоположными, что обычно бывает летом.