Выбрать главу

But before Dobb takes up, in the second half of his work, the account of these intellectual strivings—these struggles of a mentality made prey to the torment of such questions—he presents in a series of successive chapters a portrait of the "typical personoid," its "anatomy, physiology, and psychology."

A solitary personoid is unable to go beyond the stage of rudimentary thinking, since, solitary, it cannot exercise itself in speech, and without speech discursive thought cannot develop. As hundreds of experiments have shown, groups numbering from four to seven personoids are optimal, at least for the development of speech and typical exploratory activity, and also for "culturization." On the other hand, phenomena corresponding to social processes on a larger scale require larger groups. At present it is possible to "accommodate" up to one thousand personoids, roughly speaking, in a computer universum of fair capacity; but studies of this type, belonging to a separate and independent discipline—sociodynamics—lie outside the area of Dobb’s primary concerns, and for this reason his book makes only passing mention of them. As was said, a personoid does not have a body, but it does have a "soul." This soul—to an outside observer who has a view into the machine world (by means of a special installation, an auxiliary module that is a type of probe, built into the computer)—appears as a "coherent cloud of processes," as a functional aggregate with a kind of "center" that can be isolated fairly precisely, i.e., delimited within the machine network. (This, nota bene, is not easy, and in more than one way resembles the search by neurophysiologists for the localized centers of many functions in the human brain.) Crucial to an understanding of what makes possible the creation of the personoids is Chapter 11 of Non Serviam, which in fairly simple terms explains the fundamentals of the theory of consciousness. Consciousness—all consciousness, not merely the personoid—is in its physical aspect an "informational standing wave," a certain dynamic invariant in a stream of incessant transformations, peculiar in that it represents a "compromise" and at the same time is a "resultant" that, as far as we can tell, was not at all planned for by natural evolution. Quite the contrary; evolution from the first placed tremendous problems and difficulties in the way of the harmonizing of the work of brains above a certain magnitude—i.e., above a certain level of complication—and it trespassed on the territory of these dilemmas clearly without design, for evolution is not a deliberate artificer. It happened, simply, that certain very old evolutionary solutions to problems of control and regulation, common to the nervous system, were "carried along" up to the level at which anthropogenesis began. These solutions ought to have been, from a purely rational, efficiency-engineering standpoint, canceled or abandoned, and something entirely new designed—namely, the brain of an intelligent being. But, obviously, evolution could not proceed in this way, because disencumbering itself of the inheritance of old solutions—solutions often as much as hundreds of millions of years old—did not lie within its power. Since it advances always in very minute increments of adaptation, since it "crawls" and cannot "leap," evolution is a dragnet "that lugs after it innumerable archaisms, all sorts of refuse," as was bluntly put by Tammer and Bovine. (Tammer and Bovine are two of the creators of the computer simulation of the human psyche, a simulation that laid the groundwork for the birth of personetics.) The consciousness of man is the result of a special kind of compromise. It is a "patchwork," or, as was observed, e.g., by Gebhardt, a perfect exemplification of the well-known German saying: "Aus einer Not eine Tugend machen" (in effect: "To turn a certain defect, a certain difficulty, into a virtue"). A digital machine cannot of itself ever acquire consciousness, for the simple reason that in it there do not arise hierarchical conflicts of operation. Such a machine can, at most, fall into a type of "logical palsy" or "logical stupor" when the antinomies in it multiply. The contradictions with which the brain of man positively teems were, however, in the course of hundreds of thousands of years, gradually subjected to arbitrational procedures. There came to be levels higher and lower, levels of reflex and of reflection, impulse and control, the modeling of the elemental environment by zoological means and of the conceptual by linguistic means. All of these levels cannot, do not "want" to tally perfectly or merge to form a whole.

What, then, is consciousness? An expedient, a dodge, a way out of the trap, a pretended last resort, a court allegedly (but only allegedly!) of highest appeal. And, in the language of physics and information theory, it is a function that, once begun, will not admit of any closure—i.e., any definitive completion. It is, then, only a plan for such a closure, for a total "reconciliation" of the stubborn contradictions of the brain. It is, one might say, a mirror whose task it is to reflect other mirrors, which in turn reflect still others, and so on to infinity. This, physically, is simply not possible, and so the regressus ad infinitum, represents a kind of pit over which soars and flutters the phenomenon of human consciousness. "Beneath the conscious" there goes on a continuous battle for full representation—in it—of that which cannot reach it in fullness, and cannot for simple lack of space; for, in order to give full and equal rights to all those tendencies that clamor for attention at the centers of awareness, what would be necessary is infinite capacity and volume. There reigns, then, around the conscious a never-ending crush, a pushing and shoving, and the conscious is not—not at all—the highest, serene, sovereign helmsman of all mental phenomena but more nearly a cork upon the fretful waves, a cork whose uppermost position does not mean the mastery of those waves… The modern theory of consciousness, interpreted informationally and dynamically, unfortunately cannot be set forth simply or clearly, so that we are constantly—at least here, in this more accessible presentation of the subject—thrown back on a series of visual models and metaphors. We know, in any case, that consciousness is a kind of dodge, a shift to which evolution has resorted, and resorted in keeping with its characteristic and indispensable modus operandi, opportunism—i.e., finding a quick, extempore way out of a tight corner. If, then, one were indeed to build an intelligent being and proceed according to the canons of completely rational engineering and logic, applying the criteria of technological efficiency, such a being would not, in general, receive the gift of consciousness. It would behave in a manner perfectly logical, always consistent, lucid, and well ordered, and it might even seem, to a human observer, a genius in creative action and decision-making. But it could in no way be a man, for it would be bereft of his mysterious depth, his internal intracacies, his labyrinthine nature…

We will not here go further into the modern theory of the conscious psyche, just as Professor Dobb does not. But these few words were in order, for they provide a necessary introduction to the structure of the personoids. In their creation is at last realized one of the oldest myths, that of the homunculus. In order to fashion a likeness of man, of his psyche, one must deliberately introduce into the informational substrate specific contradictions; one must impart to it an asymmetry, acentric tendencies; one must, in a word, both unify and make discordant. Is this rational? Yes, and well-nigh unavoidable if we desire not merely to construct some sort of synthetic intelligence but to imitate the thought and, with it, the personality of man.