С помощью рестриктаз и лигаз первые химерические молекулы ДНК, их еще называют рекомбинантными, были получены. Но что с ними делать? Ведь проявить свои необычные свойства такие молекулы наследственности могут, только находясь в каком-то живом организме. Начался поиск существ, способных приютить, приголубить рекомбинантные ДНК и дающих им возможность нормально удваивать свое число. Конечно, кров для химерических молекул следовало выбирать попроще. А что может быть проще бактерий, одноклеточных созданий, управлять которыми наиболее легко?
Бактерии. Один из наиболее древних эшелонов жизни. Миллиарды лет были единственными обитателями биосферы. Ни человека, ни животных, ни высших растений не было на Земле, а бактерии уже праздновали не одну весну. Да они и сейчас настоящие хозяева планеты. И мы живем среди них, как экзотические цветы жизни, как редкостные образования в тьмамиллиардной массе трудяг-невидимок. Бактерии истинные космополиты: они населяют толщи почв и все водные бассейны, они поселились и в нас самих, эти малютки буквально вездесущи. Это бактерии создавали и создают месторождения полезных ископаемых, они же превращают останки живых существ в материал для новой жизни, помогают нам переваривать пищу и готовить ее, увы, еще они способны и убить нас, вызвав болезни.
Для молекулярных биологов бактерии — заманчивый объект исследований. Подкупает простота их устройства. Это всего одна клетка (обычно палочковидной формы, по-гречески bakterion и значит «палочка»).
У них нет ядра, всего одна хромосома (у человека их 23), с одной ниточкой ДНК.
Однако мир бактерий очень велик — кого выбрать, предпочесть? Кто тут наиболее пригоден для манипуляций с генами?
Так получилось, что выбор молекулярных биологов пал на кишечную палочку, научное название Escherichia coli, микроорганизм, обнаруженный австрийским врачом Теодором Эшерихом (отсюда и название «ешерихиа коли») еще в 1885 году. Бактерия, обитающая в кишечнике человека как один из основных компонентов нормальной кишечной флоры.
В тех исследованиях, о которых идет сейчас речь, кишечная палочка стала основной «рабочей лошадкой». Ее достоинства? Простота культивирования: неприхотлива, питается сахаром, особенно любит глюкозу. Кроме того, эта бактерия очень хорошо изучена, имеется ее полная генетическая карта, известны основные пути обмена веществ, быстро размножается. Ее жизненный цикл — до деления — длится всего 40 минут.
Итак, приют, удобная гавань, пристанище для химерических молекул наследственности было найдено. За чем же дело стало? Осталось перенести рекомбинантную молекулу в приготовленное для нее логово. И тут снова случилась закавыка. Что значит перенести? Ведь не возьмешь же ДНК пальцами и не посадишь в бактерию, хотя бы потому, что она, словно крепость, окружена стенками-мембранами. Вновь препятствие, оно казалось неодолимым. И тут — в который раз! — благосклонная природа указала прямые и простейшие средства.
Один из побочных продуктов развития наук — создание всемирного языка. Все больше становится слов, что одинаково звучат во всех языках и имеют один и тот же смысл. «Спутник», «стресс», «композиты», «гены» — эти и многие другие слова равнопонятны ученому любой национальности.
А еще существует масса научных терминов, которые как бы ждут своего часа. Пока они употребляются лишь узким кругом людей, прячутся в тиши кабинетов и лабораторий, таятся до поры, но настает момент — и слово начинает блистать, как звезда первой величины. Такая судьба, безусловно, ожидает и слово «плазмиды».
Открыл плазмиды в начале 50-х годов американец Джошуа Ледерберг. Он обнаружил в кишечной палочке, кроме основной спиралевидной вытянутой во весь свой гигантский рост ДНК, еще и маленькие, свернутые в колечки ДНК.
О плазмидах дружно заговорили медики, когда в 1959 году было показано, что неэффективность многих антибиотиков обусловлена этими созданиями природы; они имеют особые гены устойчивости к антибиотикам. К примеру, вырабатываемый плазмидами фермент пенициллаза разрушает пенициллин, спасая бактерии от гибели. Что, конечно же, осложняет лечение больных. Парадокс, но лучший способ добиться того, чтобы антибиотик сохранил эффективность, — это вовсе не применять его!
Но нет худа без добра! То, что затрудняло работу медиков, пригодилось генным инженерам. Им как раз нужны были переносчики реконструированных молекул ДНК в живые объекты.