Запаздывающие нейтроны, выделяющиеся в теплообменнике, производят ядерные реакции, а следовательно, вызывают радиоактивность уже вторичного теплоносителя. Большая интенсивность радиоактивных излучений вторичного теплоносителя может иногда вызвать необходимость установки второго теплообменника. Теплоноситель, нагревающийся во втором теплообменнике, уже не будет радиоактивным.
Подобным же образом может быть построен гетерогенный ядерный реактор на медленных нейтронах (рис. 52). Ядерное горючее, которым является природный или обогащенный легким изотопом уран, в расплавленном виде пропускают через каналы твердого замедлителя. Тем самым в активной зоне реактора создаются условия, необходимые для осуществления цепного процесса.
Управление процессом производится с помощью тугоплавких стальных стержней, содержащих бор и жадно поглощающих медленные нейтроны.
Жидкая горючая смесь, содержащая радиоактивные «осколки» деления, требует дополнительных мер защиты обслуживающего персонала от излучений. Окружать защитным слоем в этом случае надо не только сам ядерный реактор, но также трубопроводы с теплоносителем, насосы и первичные теплообменники.
В качестве теплоносителя могут быть использованы и газы. Проходя через реактор, они нагреваются и, имея большие давления, могут приводить во вращение турбины или осуществлять реактивное движение. Горячие газы можно пропускать через трубы парового котла и образующийся там пар высокого давления направлять на лопатки паровой турбины.
Тепловая энергия ядерного реактора с газовым теплоносителем может быть применена для отопления зданий. Таким образом частично был использован уже упомянутый в предыдущей главе английский реактор BEPO.
Этот реактор имеет мощность 4 тысячи киловатт и используется как мощный источник нейтронов для физических исследований и производства радиоактивных изотопов. Замедлителем в нем служат 850 тонн графита, а ядерным горючим — 40 тонн природного урана. Общий вид этого реактора и схема использования его тепла для отопления зданий приведены на рис. 53.
Для охлаждения реактора 3 через каналы, пронизывающие графитовый замедлитель, продувается воздух в количестве 5400 кубических метров в минуту. Воздух нагревается до температуры 100 градусов и направляется в теплообменник 6. Горячая вода из теплообменника при 70 градусах проходит через второй теплообменник 9, представляющий собой часть схемы отопления здания 10. Эта схема состоит из системы труб и радиаторов 11, где циркулирует горячая вода. В установке используется только 25 процентов всей энергии ядерного реактора, то есть 1000 киловатт. Показанные в схеме отопления заслонки первого теплообменника 5 служат для переключения горячего газа. Когда открыты нижние заслонки, горячий газ нагревает воду отопительной системы. Часть горячего газа можно пустить прямо в вытяжную трубу, открыв верхние заслонки.
Использование ядерного горючего для получения электрической энергии. Если ядерный реактор дает тепловую энергию, то нельзя ли это тепло известными нам способами превратить в механическую и электрическую энергию?
Одна из возможных схем превращения атомной энергии в электрическую приведена на рис. 54.