Выбрать главу

Для получения пара с температурой 375 градусов давление в первичном контуре придется поднять выше 225 атмосфер. При этом необходимо увеличить прочность конструкций рабочих каналов и реактора, а это потребует введения в активную зону дополнительного количества поглощающих нейтроны материалов (стали). Для осуществления устойчивой цепной реакции нужно будет увеличить содержание урана235 в тепловыделяющих элементах реактора. Увеличение стоимости ядерного горючего не будет компенсировано улучшением коэффициента полезного действия электростанции. Тем не менее, как это показано на примере работы первой атомной электростанции СССР и расчета советских ученых, строительство атомных электростанций на реакторах такого типа экономически вполне оправдывается.

При использовании газового охлаждения нет нужды создавать в каналах реактора очень большие давления. Но так как газ обладает очень малой теплоемкостью, то для отвода тепла нужно очень большое его количество продувать через реактор. Это вызывает значительные затраты энергии и является существенным недостатком газового охлаждения энергетических ядерных реакторов.

Примером может служить описанный раньше английский реактор ВЕРО, где для отвода тысяч киловатт тепловой мощности требуются воздуходувки, продувающие 5400 кубометров воздуха в минуту.

Охлаждение жидким металлом совмещает в себе достоинства газового и водяного охлаждения. Расплавленные металлы обладают высокой температурой кипения и поэтому позволяют избежать высоких давлений в первичном контуре реактора. Большая по сравнению с газами теплоемкость металла не вызывает необходимости прогонять через реактор большие массы теплоносителя. Одним из самых приемлемых теплоносителей такого типа является легкоплавкий металл натрий.

Если в графитовом реакторе заменить воду натрием, то при давлении теплоносителя 5–10 атмосфер можно значительно поднять температуру в первичном контуре и получить коэффициент полезного действия атомной электростанции, превышающий 30 процентов.

Натрий сравнительно слабо поглощает нейтроны, и поэтому в больших реакторах такого типа можно обойтись ураном с малым обогащением (около одного процента). Если же применять урановые элементы, покрытые цирконием или слоем очень тонкой стали, то можно работать и на природном уране. Графито-натриевые реакторы в ближайшее время будут применяться в энергетических установках. Недостатком натриевого охлаждения является довольно высокая радиоактивность натрия. Вследствие этого первичный контур, выполненный с расплавленным натрием, трудно обслуживать.

В атомных электростанциях вполне возможно также применение гомогенных и гетерогенных реакторов, где в качестве замедлителя используется тяжелая или простая вода.

Общий недостаток всех описанных выше реакторов заключается в том, что вырабатываемая в них энергия получается в основном за счет урана235. В будущей атомной энергетике, по всей вероятности, главную роль будут играть размножающие реакторы, в которых атомная энергия выделяется из природного урана и тория. В этом направлении и работают советские ученые. Так, академик А. И. Алиханов с сотрудниками разработали схему гомогенного размножающего реактора с кипящей водой, о которой было рассказано в предыдущем разделе.

Значение развития ядерной энергетики огромно. Дело не только в стоимости электроэнергии. Перевод тепловых электростанций на ядерное топливо даст возможность передать огромные количества угля и нефти химической промышленности. При их химической переработке получается много весьма ценных и необходимых нам материалов. Запасы угля и нефти на земле не так уж велики, и, вероятно, через 30–40 лет будет считаться варварством сжигать химическое сырье в топке паровых котлов. Вся потребность человечества в электрической энергии будет обеспечена гидроэлектрическими и ядерными станциями.

Имеется у ядерных электростанций и ряд других преимуществ.

В приведенной на рис. 64 сравнительной диаграмме видна работа тепловой и атомной электростанций. Слева размещено сырье, необходимое для выработки электроэнергии, справа — продукция электростанций.

Рис. 64. Сравнительная диаграмма работы атомной и тепловой электростанций

Тепловая электростанция требует для своей работы большое количество топлива, воды и воздуха. При ее эксплуатации получаются газообразные отходы в виде дыма, содержащего большое количество золы и несгоревшего угля. Этот дым загрязняет атмосферу городов и поселков.