Выбрать главу

Пути к этому тоже есть. Умеем же мы использовать энергию нашего большого Солнца, которая получается при 13 миллионах градусов. Сейчас мы еще далеки от каких-нибудь конструктивных решений, но все же можно представить себе, из каких примерно элементов будет состоять термоядерный реактор — искусственное Солнце (рис. 93). По-видимому, в его центре будет находиться нагретая до миллионов градусов плазма, удерживаемая в малом объеме мощными электромагнитными полями. Ионы легких элементов, сталкиваясь друг с другом, вступают в ядерные реакции, в результате которых выделяется огромная энергия. Возможно, что удастся получить с одного кубического сантиметра центрального объема мощность 1 киловатт или с одного кубического метра — миллион киловатт.

Рис. 93. Возможная схема термоядерного реактора — искусственного солнца

Носителем энергии в ядерных реакциях являются заряженные частицы, нейтроны и электромагнитное излучение. Быстрые заряженные частицы отдадут часть своей энергии в центральном объеме, тем самым поддерживая там необходимую для осуществления термоядерной реакции температуру. Основную энергию заряженные частицы потеряют во внешнем объеме вне электромагнитного поля. Эту энергию можно получить в виде тепла, выделенного какой-нибудь поглощающей стеной, окружающей центральный объем. Но можно поступить иначе, превращая энергию заряженных частиц непосредственно в электрическую, минуя тепловой цикл (паровой котел и турбину). Заряженные частицы, поглощаясь каким-либо металлом, выбивают с поверхности металла большое количество электронов. Таким образом, металлическая стенка получит положительный заряд, который обусловливает возникновение электрического тока. Существуют и другие возможности превращения энергии термоядерных реакций в электрическую.

Энергия нейтронов, поглощаемых внешней стеной, превращается в тепло. По-видимому, при высоких температурах, получающихся в термоядерных реакциях, наибольшая часть энергии будет выделяться в виде электромагнитного излучения. Эту энергию также можно превращать в тепловую и электрическую. Исследования показали, что очень чистые кристаллы кремния превращают в электрическую энергию- около семи процентов падающей на них световой энергии. Весьма вероятно, что найдутся химические соединения, которые еще эффективнее будут преобразовывать свет в электричество. Такие вещества в скором времени можно будет применять для использования солнечной энергии в промышленных целях, а в будущем можно будет использовать также энергии излучения искусственных солнц.

Наконец, энергию искусственного термоядерного солнца можно использовать в фотосинтезе. Как известно, зеленые листья растений поглощают значительную долю падающей на них солнечной световой энергии. Благодаря фотосинтезу они создают запасы энергии в органических веществах. Эту энергию мы используем при горении химического топлива. Весьма вероятно, что в будущем будет выгодно с помощью термоядерных реакций и ускоренного фотосинтеза создать искусственное химическое топливо, используя его затем как горючее на транспорте и электростанциях.

Создание на основе термоядерных реакций искусственных маленьких солнц может произвести очень эффективное изменение местного климата. Это могут

быть как неподвижные солнца, так и солнца, расположенные на искусственных спутниках земли.

Конечно, это еще пока почти фантазия, но она имеет под собой довольно прочную основу, и надо будет еще много потрудиться, чтобы превратить ее в действительность.

Среди ученых есть некоторые опасения, что в разумных и достижимых на земле объемах не удастся осуществить медленную термоядерную реакцию. Но даже если эти пессимистические высказывания оправдаются, то есть и второй путь. Он заключается в использовании малых взрывов смеси легких элементов. Для этого надо будет зажигать смесь маленькими порциями. После того как выгорит первая порция, в аппарат впускается следующая и поджигается. Это напоминает работу двигателя внутреннего сгорания, например дизеля. Здесь также порциями впрыскивается горючее, которое мгновенно воспламеняется и обеспечивает рабочий ход двигателя.