Выбрать главу

По его подсчетам, струя пара движется со скоростью примерно 100 м/с. В принципе почти с такой же скоростью может двигаться и модель. Но это в идеале. Пока же лазер лишь сталкивает модель с лабораторного стола, и она плавно планирует на пол.

Схема движения лазерного самолетика:

1 — бумажная модель; 2 — фольга; 3 — лазерный луч; 4 — источник излучения.

«Мяч» профессора Мирабо

Подобный подход к движению имеет то преимущество, что источник движения — лазер — находится вне летательного аппарата. А значит, вес самого «самолета» может быть существенно уменьшен.

Аналогичная схема может быть также использована для удешевления запуска небольших спутников. Такая идея была высказана доктором Артуром Кантровицем, профессором инженерной механики из Дартмутского университета, еще четверть века тому назад.

В экспериментах, проведенных на ракетном полигоне «Уайт Сандс», штат Нью-Мексика, в октябре 2000 года, сфокусированный луч углекислотного лазера смог подбросить модель космического аппарата «Lightcraft» весом в 50 г и размером с теннисный мяч на высоту 70 м. Полет модели продолжался всего 13 с. Однако лиха беда — начало!

Доктор Лейк Мирабо, профессор механики политехникума в г. Троя, штат Нью-Йорк, принимавший участие в упомянутом эксперименте, собирается в ближайшее время добиться еще более впечатляющих результатов. По его расчетам, мощный лазерный луч сможет разогнать небольшой летательный аппарат до скорости не менее 6М, то есть в 6 раз большей, чем скорость звука. Причем полет этот будет проходить на границе атмосферы, на высоте примерно в 100 км.

Подобная технология, по мнению профессора Мирабо, в значительной мере упростит и удешевит доставку грузов в космос. И если сейчас на каждый килограмм груза при доставке на орбиту приходится тратить не менее 10 000 долларов, то «лазерная доставка» будет стоить в 100, а то и в 1000 раз дешевле!

В одной из разработок ученого параболическое зеркало, смонтированное на корме небольшого космического аппарата, фокусировало лазерные импульсы на покрытии из полимерного материала. Материал, понятно, испарялся, и получавшаяся реактивная сила побрасывала аппарат вверх. Причем если ветер отклонял аппарат от вертикали, автоматика тут же меняла направление реактивной струи, возвращая аппарат в прежнее положение.

«Возможно, в будущем, — говорит профессор Мирабо, — удастся создать более эффективные двигатели, использующие лазерную энергию вместо жидкого топлива. Такие устройства целесообразно использовать в пределах земной атмосферы.

На больших же высотах реактивную тягу можно будет создавать с помощью водяного пара, как то предлагают японские исследователи…»

Схема движения ракеты типа «Ligchtcraft»:

1 — лазерный источник; 2 — лазерный луч; 3 — ракета; 4 — параболическое зеркало; 5 — взрыв испарившегося вещества.

Модель профессора Мирабо на столе.

Пуск!.. И под потолок лаборатории взлетает очередная модель, движимая лазерным лучом.

Когда-нибудь летательные аппараты с лазерными двигателями помогут людям осваивать просторы Вселенной.

В лаборатории идет подготовка к очередному эксперименту…

Не фантастика

Впрочем, не только японские и американские исследователи работают в этом направлении. Помнится, еще лет тридцать тому назад в одной из лабораторий Московского физико-технического института мне показывали ракету из фольги. И летала она… с помощью лазерного луча и водяного пара.

Ныне этот «трюк» несколько модернизировали во многих лабораториях. Скажем, в немецком Центре авиации и астронавтики, базирующемся в Штутгарте, подобным образом запускают «летающие тарелки» диаметром с пепельницу.

Однако чтобы вывести за пределы атмосферы реальный космический аппарат со спутником, нужно направить на него луч, пульсирующий с частотой не меньше десяти вспышек в секунду и мощностью около 1 млн. ватт. А это в 100 раз больше, чем мощность современных квантовых генераторов.