Выбрать главу

Есть и другая мысль, которая сейчас проверяется. А что, если необычный распад нейтрального каона вызывается гипотетическим сверхслабым взаимодействием?

Так или иначе, но вопрос: почему долгоживущие ка-мезоны распадаются на два пи-мезона — остается кардинальнейшим вопросом современной физики.

«Сущность этого явления непонятна, — говорит член-корреспондент АН СССР Ф. Шапиро. — Но это такое радикальное изменение наших взглядов, что когда-нибудь, я думаю, отсюда проистекут далеко идущие последствия для всего здания физики».

Утерянный рай

«Странные» положительно заряженные ка-мезоны первыми сыграли сигнал опасности для фундаментального принципа симметрии пространства. Эту опасность удалось ослабить, приняв «ультиматум» слабых взаимодействий — заменять частицы античастицами при зеркальном отражении.

Нарушение то пространственной, то зарядной симметрии в слабых взаимодействиях болезненно воспринималось физиками. Но одновременное нарушение и C- и P-симметрии затрагивало уже самые основы современной физики.

Любое уравнение квантовой механики симметрично не только относительно изменения знака у всех координат (P-симметрия) или к замене частиц на античастицы (C-симметрия), но и к изменению направления времени. То есть к «обращению во времени».

Эта временнáя, или, как ее обозначают, T-симметрия утверждает «вечную молодость» процессов микромира. T-симметрия означает отсутствие «стрелы времени», как поэтически говорят о направленности времени в макромире. К миру элементарных частиц неприменимо понятие «старение». Есть только равноправные друг другу прямое и обратное направления процесса.

Нам пришлось вспомнить об этом потому, что в основе современной квантовой теории элементарных частиц лежит теорема CPT. Смысл ее в том, что все процессы должны одновременно подчиняться принципу пространственной — P-, зарядовой — C- и временной — T-симметрии. Другими словами, любое явление в микромире, если его отразить в зеркале, частицы в нем заменить на античастицы, а конечное состояние заменить начальным, то есть изменить направление времени, должно превратиться в явление, тоже реально существующее в природе.

До экспериментов с ка-мезонами никто не сомневался, что все три типа симметрии как вместе, так и по отдельности — это строгие законы природы. Но первые два уже утеряли свою универсальность. Чем это грозит?

Если нарушается CP-симметрия, а T-симметрия остается, то рушится вся теорема CPT. Она, эта общая CPT-симметрия, может остаться в силе лишь в том случае, если нарушаются одновременно CP- и T-симметрии.

Так, лишившись двух фундаментальных законов, физики «добровольно» отказываются от третьего. Более того, они стараются доказать его нарушение, чтобы спасти основы теории. Имеет ли время власть над микромиром?

Выяснить это намного сложнее, чем в макромире. Временнáя T-симметрия накладывает запрет на некоторые физические явления. Например, у элементарных частиц не должно быть электрического дипольного момента. Можно представить, что нейтрон состоит из положительного и отрицательного зарядов, центры тяжести которых раздвинуты. Отсюда возникает электрический дипольный момент. Если ядерные процессы обратимы, то этот момент у нейтрона должен быть равным нулю.

В лаборатории нейтронной физики дубненские ученые давно уже ищут возможность для проникновения в тайну электрического дипольного момента частиц. Во всех прежних экспериментах он не был обнаружен. Но сказать, что момент этот равен нулю, пока никак нельзя — точность опыта еще недостаточно высока. Нейтроны так быстро проскакивают рабочий объем установки, что очень малое их количество распадается за это время. Даже медленные, или тепловые, нейтроны и те движутся со скоростью два километра в секунду. Нейтронный «шквал» за ничтожные доли секунды пересекает весь прибор, а для измерения дипольного момента очень важно, чтобы нейтрон как можно дольше находился в поле зрения наблюдателей, «в руках экспериментаторов». Ведь за это время надо изучить его поведение под действием электрических и магнитных полей.

Возникла, таким образом, необходимость в нейтронах гораздо более медленных, чем тепловые. Именно такие ультрахолодные нейтроны, со скоростью несколько метров в секунду, встречаются среди частиц, вылетающих из ядерного реактора. Но их очень мало: на сто миллиардов всех нейтронов приходится только один ультрахолодный.