Выбрать главу

Но даже по мере развития жизни на Земле атмосфера продолжала эволюционировать. Ультрафиолетовое излучение, пробиваясь сквозь атмосферу, разлагало молекулы воды на свободный водород и свободный кислород (этот процесс называется «фотодиссоциацией»).

Чем меньше масса молекулы газа, тем быстрее она движется при любой заданной температуре и тем легче ей вырваться за пределы гравитационного поля. Атомы водорода, высвобожденные после распада молекулы воды, постепенно покидали нашу планету, улетая в межпланетное пространство.

А вот атомы свободного кислорода оказались достаточно массивны, чтобы гравитация Земли смогла удержать их. Они соединялись между собой, образуя молекулярный кислород (где каждая молекула состоит из двух соединенных между собой атомов кислорода), который далее уже вступал в соединение с другими веществами. Соединение кислорода с каменистыми веществами, содержащимися в почве, давало окислы минералов — в основном силикаты. Соединялся кислород и с атмосферными газами — аммиаком, метаном, сероводородом, образовывая в ходе реакций в первом случае азот и воду, во втором — углекислый газ и воду, а в третьем — серу и воду.

Образованная в ходе этих реакций вода также подвергалась фотодиссоциации, и процесс продолжался. Сера входила в состав твердой коры, образовывая сульфиды или в соединении с кислородом — сульфаты. Атмосферные аммиак и метан постепенно полностью перешли в азот и углекислый газ за счет постепенного уменьшения водных запасов. Так восстановительная атмосфера сменилась нейтральной.

На Марсе аналогичный процесс на этом и закончился. Его тонкая атмосфера состоит сейчас практически целиком из углекислого газа, а водные запасы планеты снизились настолько, что воды еще хватает на образование тонких полярных ледяных шапок.

На Венере атмосфера сейчас состоит, предположительно, из азота и углекислого газа. Воды на этой планете достаточно много и сейчас, но все же ее водные запасы ученые оценивают как 1/10000 от земных.

Атмосфера Венеры всегда была толще, чем атмосфера Марса, поэтому и сейчас в ней гораздо больше углекислого газа, чем в марсианской, и это принципиально важный момент.

Углекислый газ практически не поглощает свет видимой части спектра, но инфракрасное излучение поглощает в значительной степени. Солнечный свет проходит сквозь атмосферу, содержащую углекислый газ, попадает на сушу и море и поглощается в форме тепла. Нагретая поверхность отдает часть тепла обратно в виде инфракрасного излучения, но атмосферный углекислый газ поглощает его, и тепло не уходит; в результате атмосфера нагревается.

Планета, атмосфера которой бедна углекислым газом и другими газами, поглощающими излучение, будет оставаться холодной, упуская инфракрасное излучение в космос, а другая планета, пусть даже находящаяся на таком же расстоянии от Солнца, но богатая атмосферным углекислым газом, будет, удерживая инфракрасное излучение, нагреваться. Такое действие углекислого газа называется «парниковым эффектом», поскольку стекло или пленка в парнике выполняют ту же функцию пропускания света и удержания инфракрасного излучения, благодаря чему в парнике тепло и влажно даже зимой.

По мере того как атмосфера Венеры становилась нейтральной и в ней образовывалось все больше и больше углекислого газа, температура этой атмосферы становилась все выше и выше. В конце концов температура и атмосферы и самой планеты достигла такой точки, при которой вода стала испаряться, образовывая облака. Сейчас эти облака вечно покрывают всю территорию планеты. Водяные пары тоже поглощают инфракрасное излучение, так что присутствие облачного слоя в атмосфере Венеры еще больше усилило парниковый эффект.

Создается впечатление, что такой процесс может продолжаться и дальше, при условии, что изначально имелось достаточно воды. Кислород будет и дальше выделяться в атмосферу, а когда весь аммиак и весь метан будут превращены в азот и углекислый газ, а все каменистые вещества поверхности планеты — в силикаты, поступающий с этого момента кислород начнет накапливаться в атмосфере как таковой. Однако этого не происходит.

Как только свободный кислород попадает в атмосферу, он начинает поглощать ультрафиолетовое излучение, в процессе чего двухатомные молекулы обычного кислорода превращаются в более энергетически насыщенные трехатомные молекулы озона.

Озоновый слой образовывается в верхних слоях атмосферы и поглощает ультрафиолет. По мере накопления озона все меньше ультрафиолетовых лучей пробивается через его слой и достигает нижних слоев атмосферы, где находятся водяные пары. В конце концов фотодиссоциация прекращается. Таким образом, фотодиссоциация — это процесс саморегулирующийся. С ее помощью восстановительная атмосфера может превратиться в нейтральную, как и произошло на Марсе и на Венере, но не в окислительную.

Как же получилась окислительная атмосфера на Земле?

Сначала на Земле имела место такая же фотодиссоциация, как и на Венере, только, наверное, она проходила медленнее, так как Земля находится дальше от Солнца и получает меньше ультрафиолета. Но запасы воды на Земле все равно уменьшались, а атмосфера ее постепенно становилась нейтральной, так что планета потеряла в конечном итоге около половины от общих своих запасов воды. К счастью, Земля могла себе это позволить — на ней осталось еще достаточно воды, чтобы хватило на тот океан, который мы имеем сегодня.

Но на этом процесс на Земле, в отличие от Венеры, не закончился. Появился новый фактор, связанный с эволюцией океанских живых форм первобытной Земли. Без этого фактора первые формы жизни ждал бы невеселый конец — появись они на Марсе, им оставалось бы лишь безропотно ждать, пока пересохнут дающие им жизнь водоемы, а возникни они на Венере — быстро сварились бы насмерть в кипящей воде перегретой планеты.

Земную жизнь ждала бы такая же печальная участь, если бы не пришло неожиданное избавление. В то время существовала еще только одноклеточная жизнь, не сложнее современных бактерий. Эти существа безвольно плавали в океане на определенной глубине, питаясь кусочками сложных молекул, падающими сверху. Питание первобытных одноклеточных зависело от того, с какой скоростью ультрафиолетовое солнечное излучение может производить для них пищу.

И вдруг появилась молекула, которую мы знаем под названием «хлорофилл». Эта молекула строится вокруг сложного, но стабильного атомного кольца, которое создается из более простых молекул под воздействием ультрафиолетового света. Иногда у такого кольца появляются короткие радикалы — цепочки атомов, торчащие в разные стороны от самого кольца. Из определенного сочетания таких радикалов и получился хлорофилл — вещество, способное поглощать свет видимой части спектра, лучше всего красной. Зеленый свет хлорофилл отражает, так что внешне он имеет яркий зеленый цвет. Поглощая видимый свет, хлорофилл получает из него энергию, и эта энергия производит определенные химические изменения.

Когда в клетках живых существ появился хлорофилл, они обрели важный инструмент, позволивший им делать то, чего они раньше никак не могли. Теперь первобытные одноклеточные получили возможность, поглощая энергию видимого света, проводить с ее помощью ряд химических реакций, заканчивающихся образованием сложных пищевых молекул, которыми клетка может питаться, не дожидаясь получения пищи извне. Этот процесс известен нам как фотосинтез.

Одним из следствий распространения фотосинтеза стало то, что теперь энергия уже видимого света стала широкомасштабно использоваться для разложения воды на водород и кислород. В отсутствие хлорофилла видимый свет, энергетическое содержание которого ниже, чем ультрафиолетового, таких реакций вызывать не может.

Под воздействием множества клеток, оснащенных хлорофиллом, вода распадается гораздо быстрее, чем под действием ультрафиолета. Клетки, в которых использовался хлорофилл, получали больше пищи и размножались быстрее, чем клетки, в которых хлорофилла не было. Со временем, по прошествии множества лет, практически все первобытные живые существа стали использовать хлорофилл, и фотосинтез стал основным способом существования. Поскольку хлорофилл зеленого цвета, то и все живое на Земле позеленело.