Начнем понижать температуру в нашем котле. Движение частиц будет становиться все медленнее, и ядра начнут захватывать электроны (минус и плюс притягиваться; эту истину вы наверняка помните). При этом возможны следующие варианты: ядру удобно притянуть к себе как раз столько электронов, сколько надо, чтобы образовался нейтральный атом; ядру удобно забрать число электронов меньше «нормы» — тогда образуется положительный ион; ядро захватило электронов больше «нормы» — образуется отрицательный ион. Может оказаться и так, что скольким-то электронам окажется выгодно остаться непристроенными и находиться, так сказать, в общем пользовании. Наконец, возможно, что ядрам удобнее всего создать микроколлективы и поделить между собой часть электронов. В этом случае говорят: образовалась молекула. Итак, когда температура снижена до минимума, мы можем встретиться со следующими видами твердых тел.
Первый: положительные ионы, сцементированные некоторым количеством «неприкаянных» электронов. Эти тела называются металлами.
Второй вид: шарообразные положительные и отрицательные ионы в виде плотных упаковок. Хотите зрительный образ? Пожалуйста. Упакуйте горкой бильярдные шары (отрицательные ионы), а в пустоте разместите шарики от пинг-понга (положительные ионы). Так построено множество неорганических соединений, например силикаты. Такие тела называют ионными кристаллами.
Могут возникнуть группы объединившихся атомов с обобщенными электронами, тогда про твердое тело говорят, что оно построено из молекул. Если группки атомов относительно невелики, то химики называют соответствующие соединения низкомолекулярными. Напротив, если атомы объединились в очень длинные цепи или клубки, то говорят о высокомолекулярных соединениях, или макромолекулах.
Составляя этот маленький словарик, без которого все наши дальнейшие прогнозические рассуждения невозможны, я воспользовался словом «кристалл». По опыту лектора знаю, что со словом «кристалл» большей частью ассоциируется что-то совершенное, а потому, увы, редкое. На самом же деле все обстоит как раз наоборот. Редкостью являются некристаллические твердые тела.
Как же так? Кристалл имеет совершенную структуру — безупречно правильные грани!.. Именно поэтому такие образцы мы видим только в минералогических музеях!
Противоречие снимается с помощью обычного микроскопа. Оказывается, твердые тела состоят, как правило, из небольших (меньше микрона) кристаллических зерен. Если одно такое зернышко выделить и дать ему возможность расти, то можно получить из любого вещества (так, по крайней мере, утверждают энтузиасты-специалисты по росту кристаллов, работающие в Институте кристаллографии имени академика А. В. Шубникова) крупный и как бы превосходно ограненный кристалл, ничуть не уступающий по красоте сапфирам и яхонтам.
Как же устроен кристалл?
Идеально упорядоченно, как забор, как обои, как пчелиные соты, как кирпичная кладка. Металлический кристалл — это трехмерная решетка атомов, утопленных в электронном газе. Ионный кристалл — решетка из бильярдных шаров и шариков пинг-понга. Наконец, молекулярный кристалл — плотная упаковка причудливых по форме частиц, закономерно повторяющаяся в любом направлении.
Кристалл — символ идеального порядка, так же как газ — символ хаоса.
Но — и это очень важно для наших прогнозов — нет в мире идеального порядка, не существует и идеально упорядоченных кристаллов.
Кажется, общепризнанно, что наилучшей в мире является шотландская шерсть. Когда мне удавалось найти отрез такой шерсти, я приходил к портному Николаю Васильевичу, и между нами обычно происходил такой диалог.
Н. В. (восхищенно). Да, материал первый сорт, тут уж ничего не скажешь.
Я. Костюм должен получиться великолепным. Хороший материал и ваша работа — тому залог.
Н. В. (без восхищения). Работа тут, прямо скажем, дьявольская. Клетку-то надо к клетке подогнать. Вот, скажем, спинка в рукав переходить будет. Тут уж, понимаете, как надо! Чтоб ни одного миллиметра ошибки!..
Я (просительно). Уж постарайтесь, Николай Васильевич.
Н. В. Да уж не в первый раз…
И действительно, делал так, что линия переходила в линию, клетки образовали правильный узор.
Природа работает хуже Николая Васильевича и при создании трехмерной решетки довольно часто ошибается. Образуются различного рода дефекты — неправильные смещения соседних слоев, пустоты, трещинки.
То, что такие дефекты наверняка существуют и они оказывают решающее влияние на применение твердых тел, было установлено еще в начале нашего века.
Прочность тела — одно из важнейших его качеств. Создавая изделие, всякий раз необходимо уверяться в том, что металл, стекло, кирпич или ткань не подведут — не разорвутся или не сломаются в неожиданный момент, поставив под угрозу жизнь людей. Даже если речь не идет о драматических последствиях, все равно неохота иметь дело с вещами, которые могут тебя подвести.
Нет, вероятно, ни одного промышленного предприятия, которое не испытывало бы материалы, полупродукты или изделия на прочность. Часто для этой цели готовят образец цилиндрической формы, имеющий вид, если посмотреть сбоку, римской единицы. Основания единицы захватываются цапфами специальной разрывной установки, включается моторчик, и цапфы начинают расходиться. Стрелка прибора показывает силу растяжения, которую испытывает образец. Сотни килограммов, тысячи… Раздается треск — образец разорван на две половинки. Число килограммов, отнесенное к единице площади сечения, называется сопротивлением на разрыв. Чем больше это число, тем лучше материал.
Борьба за прочность ведется многие десятилетия. Разумеется, она приобретает все большее и большее значение по мере бурного роста населения. Пока общество обходилось небольшим числом жилых зданий с толстыми стенами — строили их. Проблем не только прочности, но и теплопроводности, звуконепроницаемости не было. В городе Коломне, где мне приходится бывать время от времени, еще действует давным-давно построенная гостиница. Комфорта никакого, номера как клетушки. Но зато тишина абсолютная, летом прохладно и тепло зимой. Секрет элементарный: толщина стен не меньше метра, и простоять она может века.
Но в наше время такой подход не годится: это расточительство. А потому борьба за прочность, за звуконепроницаемость, за теплозащитные свойства тонких стенок ведется непрерывно.
Нет сомнения, что успехи, достигнутые в борьбе за прочность, немалые. Но придется признаться: они не столь уж велики.
Почему же так? В чем причина, что выигрыш всего лишь в 10–20 процентов считается важным достижением? Нет ли линии исследования, которая привела бы к тысячекратным увеличениям прочности? Может быть, достаточно бросить клич вроде: «Товарищи физики, поднажмите и придумайте способ усиления связи между атомами! Дело-то ведь, конечно, в этом. Чем крепче будут связаны атомы, тем прочнее будет предмет!» Казалось бы, так!
В начале этого века очень хорошему физику М. Борну удалось рассчитать силы связи между атомами. Правда, теория была создана не для металлов. Первым объектом для применения теории послужила поваренная соль. Причина такого выбора заключалась в том, что поваренная соль состоит из положительных ионов натрия и отрицательных ионов калия. Притягиваются эти шарики по закону Кулона (читатель помнит, конечно, этот простой закон: сила взаимодействия прямо пропорциональна произведению электрических зарядов и обратно пропорциональна квадрату расстояния между ними).
М. Борн придумал, как просуммировать взаимодействия между всеми парами частиц, учел силы отталкивания между атомами, которые возникают, когда они подходят друг к другу на близкие расстояния, и вычислил теоретическое значение прочности поваренной соли (кстати, когда соль находят в природе, а не берут щепотку из солонки, то ее называют каменной).
Итак, теория готова. Дело за проверкой. Большой кристалл природной каменной соли не редкость. А выточить из него цилиндрик, в профиле похожий на римскую единицу, — дело пустяковое. Остается вставить в разрывную машину и посмотреть, до какого деления доберется стрелка регистрирующего прибора в момент разрыва образца.