Рис. 17. Эллипс и его оси — большая (АВ) и малая (CD). Точка О — центр эллипса
Рис. 18. Как разыскать фокусы эллипса
Познакомимся немного с геометрией эллипса. В эллипсе (рис. 17) АВ — его «большая ось», CD — «малая ось». В каждом эллипсе, кроме «центра» О, есть еще две замечательные точки — «фокусы», лежащие на большой оси симметрично по обеим сторонам цент ра. Разыскивают фокусы так (рис. 18): раздвигают ножки циркуля на расстояние большой полуоси ОВ и, установив острие в конце С малой оси, описывают дугу, пересекающую большую ось. Точки пересечения F и F1 — фокусы эллипса. Расстояния ОF и OF1 (они равны) обозначаются обыкновенно буквой с, а оси, большая и малая, через 2а и 2b. Расстояние с, отнесенное к длине а большой полуоси, т. е. дробь с/а, служит мерой растянутости эллипса и называется «эксцентриситетом». Чем больше эллипс отличается от круга, тем эксцентриситет его больше.
Мы будем иметь точное представление о форме земной орбиты, если узнаем величину ее эксцентриситета. Это можно определить и не измеряя величину орбиты. Дело в том, что Солнце помещается в одном из фокусов орбиты и кажется нам с Земли неодинаковой величины вследствие различного удаления точек орбиты от этого фокуса. Видимые размеры Солнца то увеличиваются, то уменьшаются, и отношение размеров, конечно, в точности отвечает отношению расстояний Земли от Солнца в моменты наблюдений. Пусть Солнце помещается в фокусе F1 эллипса (рис. 18). Земля бывает в точке А орбиты около 1 июля, и тогда мы видим наименьший диск Солнца; его величина в угловой мере — 31′28′′. В точке В Земля бывает около 1 января, и тогда диск Солнца кажется нам под наибольшим углом — 32′32″. Составим пропорцию:
из которой можно образовать так называемую производную пропорцию
или
Значит,
т. е. эксцентриситет земной орбиты равен 0,017. Достаточно, как видите, тщательно измерить видимый диск Солнца, чтобы определить форму земной орбиты.
Покажем теперь, что орбита Земли весьма мало отличается от круга. Вообразим, что мы начертили ее на огромном чертеже, так что большая полуось орбиты равна 1 м. Какой длины окажется другая — малая полуось эллипса? Из прямоугольного треугольника OCF1 (рис. 18) имеем
Но c/a есть эксцентриситет земной орбиты, т. е. 1/60. Выражение а2 — b2 заменяем через (а — b) (а + b), а (а + b) — через 2а, так как b мало отличается от а.
Имеем
и, значит,
Мы узнали, что на чертеже даже столь крупного масштаба разница в длине большой и малой полуосей земной орбиты не превышает 1/7 мм. Тонкая карандашная линия имеет толщину, бóльшую, чем эта величина. Значит, мы практически не делаем никакой ошибки, когда чертим земную орбиту в форме круга.
Куда следует поместить изображение Солнца на таком чертеже? На сколько надо отодвинуть его от центра, чтобы оно оказалось в фокусе орбиты? Другими словами, чему равно расстояние OF или OF1 на нашем воображаемом чертеже? Расчет несложен:
Центр Солнца должен на чертеже отстоять на 1,7 см от центра орбиты. Но так как само Солнце должно быть изображено кружком в 1 см поперечником, то только опытный глаз художника заметил бы, что оно помещено не в центре круга.