Только могущественные методы органического синтеза наших дней позволили, наконец, получить полиацетилен. Его родиной стал Советский Союз. Наши ученые создали новый класс органических соединений, так называемые полиины. Новорожденные вещества сразу нашли практическое применение, оказавшись превосходными полупроводниками.
Теперь предстоял второй шаг на пути к синтезу третьей разновидности углерода: изгнание из молекулы полиацетилена атомов водорода. Так, чтобы сохранилась цепочка из одних углеродов.
Процесс, с помощью которого хотели выгнать водородные атомы, на языке химиков носит длинное и нудное название — окислительная дегидрополиконденсация. Не будем вдаваться в объяснение сути процесса. В лабораторных дневниках его описание заняло десятки страниц, ибо освободить полиацетилен от водорода оказалось весьма непросто. Многие опыты кончались неудачей.
И все-таки советские ученые достигли блестящего успеха!
…Невзрачный, напоминающий сажу, черный порошок. Химический анализ показал: на 99 процентов он состоит из чистого углерода. На девяносто девять, но пока еще не на все сто.
Собственно, на пути к полной победе предстоит сделать еще один шаг. Нужно избавиться от этого пресловутого процента водорода. Именно он мешает углеродным атомам собраться в едином ровном строю, вытянуться в параллельные цепочки. Именно он последнее препятствие на пути к «углероду номер 3».
Синтезированную «почти третью» разновидность углерода химики назвали карбином. Он уже продемонстрировал свои удивительные способности. Прекрасный полупроводник, обладает фотоэлектрическими свойствами и потрясающе устойчив к нагреванию: полторы тысячи градусов для него ничто!
И мы уверены, недалеко время, когда «стопроцентный» карбин станет реальностью.
Много великих химиков жило и творило в девятнадцатом столетии. Но трое из этого блестящего созвездия ученых — химики величайшие. Они сделали для своей науки больше чем кто бы то ни было. Они заложили основу современной химии.
Это Дмитрий Иванович Менделеев, открывший периодический закон и периодическую систему элементов.
Александр Михайлович Бутлеров, создавший теорию строения органических соединений.
Третий — немецкий химик Альфред Вернер. Его открытие умещается всего в два слова: «координационная теория». Оно — целая эпоха в развитии неорганической химии.
…Все началось с того, что химики стали изучать, как металлы взаимодействуют с аммиаком. Они брали обычную соль, например хлористую медь. Добавляли нашатырного спирта. Раствор выпаривали. Получали красивые сине-зеленые кристаллы. Анализировали их. Вещество имело простой состав, но эта простота оказывалась загадочной.
Формула хлористой меди — CuCl2. Здесь медь двухвалентна, все предельно ясно. Кристаллы «аммиачного» соединения тоже устроены не бог весть как сложно: Cu(NH3)2Cl2.
Но благодаря каким силам две молекулы аммиака прочно и надежно связываются с атомом меди? Ведь обе ее валентности израсходованы на связь с атомами хлора. Выходит, в этом соединении медь должна быть четырехвалентной?
А вот другой пример, аналогичное кобальтовое соединение Co(NH3)6Cl3. Кобальт, типичный трехвалентный элемент, здесь девятивалентен?!
Такие соединения синтезировались во множестве, и каждое из них представляло собой мину замедленного действия, заложенную в фундамент здания теории валентности.
Концы не сходились с концами. У многих металлов обнаруживались валентности совершенно необычные.
Альфред Вернер объяснил это странное явление.
Он полагал так: атомы, после того как насытили свои обычные, законные валентности, могут проявлять еще валентности дополнительные. Скажем, медь, затратив две основные валентности на атомы хлора, изыскивает две дополнительные для присоединения аммиака.
Соединения, подобные Cu(NH3)2Cl2, называют комплексными. Здесь комплексным является катион [Cu(NH3)2]2+. Во многих веществах сложное строение у аниона, например у K2[PtCl6] комплексный анион [PtCl6]2–.
Но сколько побочных валентностей может проявлять металл? Это количество определяется величиной координационного числа. Наименьшее его значение равно 2, наибольшее — 12. Так, в аммиачном соединении меди оно 2. Именно столько молекул аммиака присоединено к медному атому.
Загадка необычных валентностей была решена. Родился новый раздел неорганической химии — химия комплексных соединений.