Выбрать главу

Подобно поверхностям, n-мерные многообразия могут быть ориентируемыми и неориентируемыми. Самый простой способ проверки на ориентируемость дает критерий Дика (глава 16). Пусть имеется два одинаковых набора осей координат на неориентируемом n-мерном многообразии. Тогда можно переместить один набор осей вдоль многообразия таким образом, что когда он вернется в исходную точку, все оси не удастся совместить. Например, в случае 3-мерного многообразия, если совместить оси x и y, оси z будут направлены в разные стороны (см. рис. 22.2).

Рис. 22.2. Оси координат на неориентируемом 3-мерном многообразии

Многообразия любой размерности могут иметь края, и край n-мерного многообразия является многообразием на единицу меньшей размерности. Край 1-мерного многообразия — 0-мерное многообразие (две точки), край 2-мерного многообразия (поверхности) — 1-мерное многообразие (одна или несколько окружностей), а край 3-мерного многообразия (тела) — поверхность. Например, краем сплошного тора является обычный (полый) тор. Краем сплошного шара является сфера, и вообще n-мерный шар Вnявляется n-мерным многообразием, а его краем — (n — 1) — мерная сфера Sn-1 (определения Sn и Вn см. в главе 19.)

История многообразий восходит к Риману и его изучению многозначных комплексных функций и ассоциированных с ними римановых поверхностей. Но только на рубеже XX столетия Пуанкаре показал, что многообразие — важный объект исследования и предложил несколько способов его описания. Пожалуй, простейший из них — выразить многообразие в виде подмножества ℝn с помощью одного или нескольких уравнений. Например, уравнение х2 + у2 +z2 = 1 определяет сферу, а (3- √ X2 + у2)2 + z2 = 1 — тор. Оба многообразия находятся в R3.

Иногда Пуанкаре представлял многообразие n-мерным многогранником, который называл симплициальным комплексом. В симплициальном комплексе обобщением вершины, ребра и грани является симплекс. Можно предполагать, что все симплексы — это треугольники или многомерные аналоги треугольников. На рис. 22.3 показано, что k-симплекс — это k-мерная фигура, определяемая k + 1 точками. 0-симплекс — это точка, 1-симплекс — отрезок прямой, 2-симплекс — треугольник, 3-симплекс — треугольная пирамида и т. д. Предполагается, что два соседних симплициальных комплекса граничат по симплексу меньшей размерности. (Заметим, что как многогранники Гесселя [глава 15] не были поверхностями, так не каждый симплициальный комплекс является многообразием.)

Рис. 22.3. 0-, 1-, 2- и 3-симплексы

Пуанкаре предложил еще один способ описания многообразий — обобщение построения поверхностей Клейном. Как Клейн строил поверхности, склеивая стороны многоугольников, так Пуанкаре создавал n-мерные многообразия, склеивая грани n-мерных многогранников. Чтобы получить тор, нужно склеить противоположные грани квадрата без перекручивания. Аналогично, чтобы построить 3-мерный тор, нужно попарно склеить противоположные грани куба без перекручивания (см. рис. 22.4). 3-мерный тор — пример замкнутого ориентируемого 3-мерного многообразия.

Рис. 22.4. После склеивания соответственных граней получается тор

В абстрактном определении многообразия не говорится, где это многообразие «живет». Мы смогли определить бутылку Клейна и понять ее свойства, не зная, что она не может существовать в ℝ3. Спрашивается: если дано n-мерное многообразие общего вида, всегда ли можно поместить его в евклидово пространство ℝm, так чтобы избежать самопересечений? Если да, то насколько большим должно быть m? Хасслер Уитни доказал, что любое n-мерное многообразие можно разместить в некотором евклидовом пространстве размерности не больше 2n. Этот результат называется теоремой Уитни о вложении.

В главе 17 мы рассматривали теорему классификации для поверхностей. Каждая поверхность является либо сферой с ручками, либо сферой со скрещенными колпаками. Имеет смысл задаться вопросом, можно ли классифицировать n-мерные многообразия для n > 2. Оказывается, что это очень трудная задача. В главе 17 мы утверждали, что размерность n-мерного многообразия — топологический инвариант, т. е. 5-мерное многообразие не может быть гомеоморфно 7-мерному. Даже этот результат обосновать было нелегко. Только в 1911 году Брауэр доказал теорему об инвариантности размерности197, которая утверждает, что ℝn” негомеоморфно ℝm при m ≠ n. Позже мы обсудим одну из самых знаменитых задач классификации, за решение которой была назначена награда в миллион долларов.