Широко распространено ошибочное мнение, будто объекты в математике называются в честь своих первооткрывателей, а если это не так, значит, налицо чуть ли не плагиат или фальсификация истории. По такому стандарту Эйлера уязвляли неоднократно, потому что многие его открытия носят имена других людей (есть расхожая острота — «математические объекты называют в честь первого человека, открывшего их после Эйлера»). Несть числа примерам (даже в этой книге) математических объектов, названных не по имени первооткрывателя, а в честь кого-то, внесшего важный вклад в предмет, — быть может, того, кто первым осознал важность открытия. Кун замечает, что, как в данном примере, не вполне понятно, кому принадлежит приоритет открытия. «Вот почему мы так охотно соглашаемся с тем, что процесс открытия, подобно зрению или осязанию, столь же определенно должен быть приписан отдельной личности и определенному моменту времени. Но открытие невозможно приурочить к определенному моменту; часто его нельзя и точно датировать… Открытие предполагает осознание и того, что произошло, и того, каким образом оно возникло»76. (Вспомните замечание Уотерхауса о том, что правильные тела ничем не выделялись, пока Теэтет не увидел то общее, что их связывает».)
Открыл ли Декарт формулу Эйлера раньше — спорный вопрос. Но поскольку работа Декарта не была опубликована и поскольку он не нашел «полезного» вида этой формулы, будет разумно и дальше называть соотношение V — E + F = 2 формулой Эйлера.
Приложения к главе
70. Descartes (1965), 259.
71. Quoted in Bell (1937), 35.
72. Descartes (1965).
73. Kuhn (1970), 54.
74. Quoted in Federico (1982), 76.
75. Lebesgue (1924).
76. Kuhn (1970), 55.
Глава 10
Лежандр расставляет все по местам
Главное для математиков — чтобы архитектура была правильной. Какой бы математикой я ни занимался, принципиально важно было найти правильную архитектуру. Это все равно, что строить мост. После того как основные черты архитектуры выбраны правильно, все детали укладываются как по волшебству. Вся проблема — в общей конструкции.
Второе опубликованное доказательство формулы Эйлера для многогранников и первое, отвечающее современным стандартам строгости, было дано Адриеном-Мари Лежандром. Лежандр стал первым французским математиком, который являлся одновременно членом Французской академии наук и Лондонского королевского общества. Он публиковал работы в нескольких областях, но наиболее важный вклад внес в теорию чисел и теорию эллиптических функций. Его наследие включает также чрезвычайно популярный учебник элементарной геометрии «Elements de Geometrie» (Элементы геометрии), написанный в 1794 году. Во многих отношениях «Элементы» Лежандра заменили «Начала» Евклида, став основным учебником геометрии на следующие сто лет и задав образец для будущих учебников. Эта книга несколько раз переводилась на английский язык, а один американский перевод выдержал тридцать три издания.
Рис. 10.1. Адриен-Мари Лежандр
Лежандр включил формулу Эйлера для многогранников в «Элементы геометрии», а благодаря популярности книги она получила широкую известность. Лежандр не стал исправлять доказательство Эйлера, а предложил новое — существенно отличающееся. В своем изобретательном рассуждении Лежандр воспользовался понятиями сферической геометрии и такими метрическими свойствами, как величины углов и площади. Успех выглядит особенно неожиданным в свете того, что в самой формулировке теоремы этих понятий нет.
Ключ к доказательству Лежандра — элегантная формула из сферической геометрии, которая выражает площадь треугольника на поверхности сферы через три его внутренних угла. На сфере треугольники и другие многоугольные фигуры образованы не прямыми линиями, а дугами больших окружностей. Большой окружностью называется любая окружность на сфере, радиус которой равен радиусу сферы, или, эквивалентно, любая окружность максимально возможного радиуса. Примерами больших окружностей являются экватор и меридианы. Параллели, отличные от экватора, например тропик Рака, тропик Козерога, Полярный круг, не являются большими окружностями. Большие окружности — не прямые, но настолько близки к прямым, насколько это возможно на сфере. Они обладают важным свойством — дают путь минимальной длины. То есть кратчайшим путем между двумя точками на сфере является дуга проходящей через них большой окружности. Если оставить в стороне физические условия, в частности ветер и вращение Земли, то кратчайший маршрут самолета из Пенсильвании в Индию должен был бы пролегать по дуге большой окружности, проходящей через Исландию.