Выбрать главу

Люилье (и Жергонн) полагал, что этим исчерпываются все возможные исключения из формулы Эйлера. Люилье писал: «Легко убедиться, что теорема Эйлера верна в общем случае для всех многогранников, выпуклых и невыпуклых, за исключением случаев, которые будут описаны ниже»128.

Затем, вместо того чтобы игнорировать исключения, Люилье придумал модификацию формулы Эйлера, учитывающую особенности исключительных многогранников. Он утверждал, что многогранник с T туннелями, C полостями и P внутренними многогранниками удовлетворяет формуле

V — E + F = 2 — 2T + P + 2C.

Нетрудно проверить, что эта формула действительно верна для всех трех многогранников на рис. 15.1.

Но, как оказалось, три случая, найденных Люилье, не исчерпывают всех исключений из формулы Эйлера, и его изобретательная формула неприменима ко всем «экзотическим» многогранникам. Например, ни один из четырех многогранников на рис. 15.2 не попадает ни в одну из категорий Люилье и не понятно, как применить его формулу. У первого многогранника имеется грань с двумя внутренними многоугольниками с общей вершиной; во втором имеется туннель с разветвлением; в третьем — полость в форме тора, а четвертый сам имеет форму тора, но наличие туннеля не очевидно.

Рис. 15.2. Многогранники сложной формы

И мы снова возвращаемся к проблеме определения многогранника — невозможно классифицировать эйлеровы многогранники, не имея точного определения, что такое многогранник. Тем не менее классификация исключений Люилье принесла чрезвычайную пользу, а его формула в несколько модифицированном виде в конечном итоге оказалась правильной. На самом деле, согласно Лакатосу, этот модифицированный вариант формулы Эйлера или похожий на него переоткрывался десяток раз за восемьдесят лет, последовавших за открытием Люилье.

Иоганн Гессель сначала получил медицинское образование, но изменил род занятий, после того как известный минералог К. К. фон Леонард убедил его заняться минералогией. В итоге Гессель стал профессором минералогии и технологий горных работ в немецком Марбурге. Он внес вклад в разные области науки, но больше всего известен математическими исследованиями классов симметрии минералов.

В статье 1832 года Гессель описал пять исключений из формулы для многогранников129. Работая над статьей и предлагая ее для публикации, Гессель не знал о работе Люилье, написанной двадцатью годами раньше. Но вскоре он узнал об этой работе и о том, что три из пяти его исключений уже были описаны Люилье. Гессель полагал, что многим неизвестно об этих важных исключениях, поэтому не стал отзывать статью. Два новых исключения Гесселя показаны на рис. 15.3. Одно из них — многогранник, образованный двумя многогранниками, соединенными по ребру, а другое — многогранник, образованный двумя многогранниками, соединенными в вершине. Вопрос о том, следует ли называть эти фигуры многогранниками, спорный, но нет сомнений, что они не удовлетворяют формуле Эйлера. Первый имеет 12 вершин, 20 ребер и 11 граней (12 — 20 + 11 = 3), а второй — 8 вершин, 14 ребер и 9 граней (8 — 14 + 9 = 3).

Рис. 15.3. Исключения Гесселя из формулы для многогранников

Луи Пуансо нашел еще два исключения в 1810 году130. В статье, содержащей уточнение доказательства Лежандра, Пуансо также представил четыре звездных многогранника, показанных на рис. 15.4. Как мы видели, математические теоремы часто открываются, потом забываются и открываются заново. Напомним, что два из этих четырех звездных многогранников, большой и малый звездные додекаэдры, были описаны еще Кеплером (см. рис. 6.6), а до того встречались на картинах Ямницера и Уччелло (рис. 6.3). Пуансо первым представил два других звездных многогранника, большой додекаэдр и большой икосаэдр, в математическом контексте, хотя первый также встречается на рисунках Ямницера (рис. 6.3). Эти четыре многогранника теперь называются многогранниками Кеплера-Пуансо.