Сфера и тор — примеры замкнутых поверхностей. В них нет проколов, они не простираются в бесконечность и не имеют резких границ. Иногда мы хотим рассматривать незамкнутые поверхности. Диск и цилиндр — примеры поверхностей с краем. Поверхность с краем по-прежнему локально двумерная, но может иметь одну или более одномерных граничных кривых. Некоторые сторонники теории плоской Земли верят, что Земля имеет край. На такой планете незадачливый Колумб не добрался бы до Индии, а свалился бы через край в океан.
Для простоты мы будем использовать термин «поверхность», имея в виду компактную поверхность. Термин «компактная» означает, что поверхность ограничена и содержит все свои края. Иначе говоря, мы не рассматриваем неограниченные поверхности, такие как двумерная плоскость или цилиндрическая труба, уходящие в бесконечность в обоих направлениях. Говоря, что поверхность должна содержать все свои края, мы хотим исключить такие поверхности, как открытый единичный диск (x2 + y2 < 1). Открытым единичным диском называется множество всех точек, отстоящих от начала координат на расстояние, строго меньшее 1; это единичный диск (x2 + у2 ≤ 1), из которого удалена граничная окружность. Хорошая аналогия — обтрепанные штаны после отрезания размахрившихся краев, нам эта бахрома нужна.
В 1882 г. Феликс Клейн (1849–1925) придумал остроумный способ построения поверхностей140. Он начал с многоугольника (представьте, что он сделан из очень мягкой резины) и строил поверхность, попарно склеивая его стороны. Например, если взять квадрат, скатать его в трубочку и склеить две противоположные стороны, то получится цилиндр (рис. 16.2). Заметим, что если бы вместо скатывания квадрата в цилиндр мы деформировали фигуру на плоскости, пока противоположные стороны не сойдутся (для этого нужна очень мягкая резина!), то получилось бы кольцо в виде крепежной шайбы. Для тополога цилиндр и кольцо неразличимы.
Чтобы было понятно, какие стороны склеивать и в каком направлении, их обычно снабжают стрелками. есть два разных способа склеить пару сторон: с перекручиванием и без. Чтобы обозначить нужное совмещение, мы и используем стрелки. Когда требуется склеить не одну пару сторон, а больше, используются кратные стрелки или стрелки разной формы, чтобы показать, какие стороны склеиваются. На рис. 16.3 мы склеиваем обе пары противоположных сторон квадрата. Для этого одна пара сторон помечается одиночными стрелками, а другая — двойными. Сначала склеивается одна пара сторон и получается цилиндр. Затем, поскольку обе граничные окружности имеют совместимые ориентации, мы соединяем их и получаем тор.
Рис. 16.2. Цилиндр или кольцо
Рис. 16.3. Создание тора из квадрата
В некоторых старых аркадных играх, например Asteroids, использовалось такое тороидальное представление. Покидая прямоугольный экран с одной стороны, космический корабль неожиданно появлялся с другой (рис. 16.4). А если он вылетал наверх, то появлялся снизу. В других играх применялись иные топологические конфигурации. Например, игра Pac-Man разворачивалась на поверхности цилиндра.
Нет никакой нужды ограничиваться квадратами при построении поверхностей. На рис. 16.5 показан восьмиугольник с четырьмя парами противоположных сторон (они помечены одиночными и двойными стрелками, а также одиночными и двойными треугольниками). Чтобы представить, как выглядит получающаяся поверхность, полезно сделать диагональный разрез восьмиугольника (разрез помечен тремя стрелками, чтобы впоследствии склеить его края вместе). Деформируем оба пятиугольника в квадраты с вырезом. Эти квадраты похожи на квадрат на рис. 16.3, поэтому после склеивания они образуют тор с отрезанной горбушкой. Наконец, склеиваем оба тора по границам отрезов и получаем тор с двумя дырками (или двойной тор).
Клейн доказал, что любую поверхность можно представить в виде многоугольника с парами склеенных сторон, но может существовать много представлений одной поверхности в виде многоугольников. По счастью, у каждой поверхности есть «красивое» многоугольное представление, и путем разрезания и склеивания любое многоугольное представление можно преобразовать в красивое141.
Во всех рассмотренных выше примерах стороны многоугольников склеивались без перекручивания. На рис. 16.6 показан квадрат, противоположные стороны которого склеены с перекручиванием. Поскольку квадрат сделан из резины, мы можем его вытянуть, скатать, как если бы собирались склеить цилиндр, но перед склеиванием повернуть один конец на полоборота. В результате получится хорошо известная лента Мёбиуса.