Выбрать главу

Рассмотрим три петли из фокуса с афганскими лентами в главе 16. Одна не перекручена вовсе, вторая перекручена один раз, а третья — два раза. Очевидно, что внешняя топология всех трех различна. Но, согласно нашему эвристическому правилу, третья фигура гомеоморфна неперекрученной цилиндрической ленте, поскольку если разрезать цилиндр и дважды перекрутить его, то края разрезов можно будет правильно совместить перед склеиванием (рис. 17.5). Будем называть третью фигуру скрученным цилиндром. Для ленты Мёбиуса это не так. Если разрезать цилиндр и перекрутить его один раз, то края разреза нельзя будет совместить правильно. Поэтому, несмотря на поверхностное сходство между лентой Мёбиуса и скрученным цилиндром, они негомеоморфны.

Рис. 17.5. Дважды перекрученная полоса гомеоморфна цилиндру, а перекрученная один раз — нет

Хотя интуиция подсказывает, что лента Мёбиуса негомеоморфна цилиндру (скрученному или нет), доказательства мы не дали. Да, это кажется маловероятным, но, быть может, существует хитрый способ разрезания, который перевел бы одну фигуру в другую. Фокус с двойным тором на веревке уже научил нас, что не всегда можно доверять внутреннему чутью, но в данном случае интуиция не подвела — фигуры негомеоморфны.

Топологическим инвариантом называется ассоциированное с поверхностью свойство или математическая сущность, которая зависит только от топологии поверхности. Топологический инвариант может быть числом, например числом краев. если две поверхности гомеоморфны, то число краев у них должно быть одинаково. На практике это утверждение полезнее в контрапозитивной форме: если у двух поверхностей разное число краев, то они не могут быть гомеоморфными. Поскольку край цилиндра состоит из двух компонент, а край ленты Мёбиуса — из одной, то они негомеоморфны.

Еще одним топологическим инвариантом является внутренняя размерность: она позволяет отличить сферу (двумерную поверхность) от окружности (одномерной). Мы продолжим обсуждение размерности в главе 22.

Топологическим инвариантом, а точнее топологическим свойством, является также ориентируемость. Две топологически одинаковые поверхности либо обе ориентируемые, либо обе неориентируемые. По-другому то же самое можно выразить, сказав, что если одна поверхность ориентируемая, а другая нет, то они не могут быть гомеоморфными. Нетрудно видеть, что цилиндр и скрученный цилиндр ориентируемы, а лента Мёбиуса — нет.

Согласно нашим правилам разрезания и склеивания, полоска бумаги, перекрученная четное число раз и затем склеенная, топологически эквивалентна цилиндру, а перекрученная нечетное число раз — ленте Мёбиуса. Полоски с четным числом перекрутов ориентируемы, и их край состоит из двух компонент, а полоски с нечетным числом перекрутов неориентируемы, а их край состоит из одной компоненты, так что они гомеоморфны друг другу. Заметим, кстати, что у каждой перекрученной полоски есть зеркальный близнец. Перекручивать полоску перед склеиванием можно по часовой стрелке и против часовой стрелки.

Ориентируемость, размерность и количество компонент края — три важных топологических инварианта. Еще одним топологическим инвариантом, пожалуй, самым важным из всех, является величина V — E + F. Пусть дана поверхность S, разбитая на V вершин, E ребер и F граней (конечно, нужно по-прежнему избегать кольцеобразных граней). Определим эйлерову характеристику S как число V — E + F. Обычно эту величину обозначают греческой буквой хи: χ(S) = V — E + F.

Эйлерова характеристика является топологическим инвариантом поверхности.

Говоря, что эйлерова характеристика — топологический инвариант, мы имеем в виду, что у каждой поверхности своя формула Эйлера. Например, на сфере на рис. 17.6 имеется 62 вершины, 132 ребра и 72 грани, поэтому ее эйлерова характеристика равна

χ(сфера) = 62 — 132 + 72 = 2.

Как мы знаем, это верно для любого разбиения сферы или чего-то, гомеоморфного сфере.

Рис. 17.6. Разбиения сферы, тора и бутылки Клейна

У тора на рис. 17.6 имеется 8 вершин, 16 ребер и 8 граней, поэтому его эйлерова характеристика равна

χ(тор) = 8 — 16 + 8 = 0.

Аналогично у бутылки Клейна на рис. 17.6 8 вершин, 16 ребер и 8 граней, поэтому

χ(бутылка Клейна) = 8 — 16 + 8 = 0.

Доказательство того, что эйлерова характеристика — топологический инвариант, проводится в несколько шагов. Сначала нужно показать, что любую поверхность можно разбить на конечное число вершин, ребер и граней. То есть не существует поверхностей настолько странных, что для них не найдется конечного разбиения (именно здесь используется предположение о компактности, обсуждавшееся в главе 6, — у евклидовой плоскости и открытого единичного диска нет конечного разбиения, но они и не рассматриваются). В случае многогранника разбиение уже задано — это просто его вершины, ребра и грани. Произвольная поверхность не имеет встроенного разбиения. Как ни странно, первое доказательство того, что любую поверхность можно разбить на вершины, ребра и грани, появилось только в 1924 году151.