Выбрать главу

В математике теоремы классификации обычно трудны или вообще невозможны. Неудивительно, что Эйлер так и не довел до конца свою классификацию многогранников. Но иногда классифицировать математические объекты удается. Ведь классифицировал же Теэтет все правильные многогранники, а Архимед — полуправильные многогранники.

Удивительно, что классифицировать поверхности (с краем и без края) можно. Каждая замкнутая поверхность гомеоморфна сфере с ручками или сфере со скрещенными колпаками. То есть каждая ориентируемая поверхность топологически эквивалентна тору с каким-то числом дырок, а каждая неориентируемая поверхность — сфере с одной или большим числом прикрепленных к ней лент Мёбиуса. На самом деле теорема даже сильнее. Если дана произвольная замкнутая поверхность, для которой известна эйлерова характеристика и ориентируема она или нет, то эту поверхность можно точно идентифицировать.

Теорема классификации поверхностей
Замкнутая поверхность однозначно определяется эйлеровой характеристикой и ориентируемостью. Ориентируемая поверхность гомеоморфна сфере с g ручками для некоторого g ≥ 0. Неориентируемая поверхность гомеоморфна сфере с c скрещенными колпаками для некоторого c > 0.

Например, предположим, что S — ориентируемая замкнутая поверхность с эйлеровой характеристикой –6. Поскольку S ориентируемая, мы знаем, что она гомеоморфна сфере рода g (сфере с g ручками), где –6 = χ(S) = 2 — 2g. Следовательно, S гомеоморфна тору с 4 дырками. Аналогично, если T — неориентируемая замкнутая поверхность с эйлеровой характеристикой –4, то она гомеоморфна сфере с с скрещенными колпаками, где –4 = χ(Т) = 2 — с. Иными словами, T гомеоморфна сфере с 6 скрещенными колпаками.

Похожая теорема классификации имеет место для поверхностей с краем. Любая поверхность с краем эквивалентна одной из этих стандартных поверхностей с одним или несколькими вырезанными дисками. Эйлерова характеристика, ориентируемость и число компонент края определяют поверхность однозначно. Единственной ориентируемой поверхностью с эйлеровой характеристикой 0 и двумя компонентами края является цилиндр, единственной неориентируемой поверхностью с эйлеровой характеристикой 0 и одной компонентой края — лента Мёбиуса и т. д. (см. табл. 17.1).

Таблица 7.1. Эйлерова характеристика, ориентируемость и число компонент края для различных поверхностей

Поверхность S χ(S) Ориентируемая Компонент края
Сфера 2 Да 0
Тор 0 Да 0
Тор с двумя дырками — 2 Да 0
Тор с g дырками 2 — 2g Да 0
Диск 1 Да 1
Цилиндр/кольцо 0 Да 2
Бутылка Клейна 0 Нет 0
Проективная плоскость 1 Нет 0
Сфера с c скрещенными колпаками 2–c Нет 0
Лента Мёбиуса 0 Нет 1

В некотором смысле первым, кто начал процесс классификации (в 1850-х годах), был Бернхард Риман (1826–1866). Риман — один из самых знаменитых математиков XIX столетия. Он получил степень доктора в Гёттингенском университете под руководством Гаусса в самом конце карьеры последнего. В то время Гёттинген не был центром математики в Германии (Гаусс читал там только вводные курсы), поэтому над диссертацией Риман работал в основном в Берлинском университете.