Выбрать главу

Вот теперь можно обратиться и к кристаллу. И в нем скольжение оказывается облегченным в связи с наличием подвижного дефекта, подобного приподнятым лапкам гусеницы или отставшей от пола складки ковра.

Представим себе, что одна из тех атомных плоскостей кристалла, которые ориентированы перпендикулярно плоскости скольжения, обрывается на этой плоскости, не имеет за ней продолжения. Очевидно, оборванная плоскость должна перемещаться легче прочих. Когда она сместится на межатомное расстояние, се положение займет следующая плоскость и т. д., и т. д. Последняя фраза означает, что движется не данная оборванная плоскость, атомы которой можно было бы пометить, а дефект структуры — незавершенная, оборванная плоскость. Она — поднятые лапки гусеницы, она — складка на ковре. Такой дефект структуры называют краевой дислокацией, а линию, которая ограничивает незавершенную плоскость, — линией краевой дислокации.

Здесь, пожалуй, уместно нарисовать две простые картинки и прокомментировать их. На одной из них изображен участок здорового кристалла. В этом участке избран один произвольный атом, от которого мысленно начат маршрут, состоящий из некоторого числа шагов — периодов решетки — влево, вниз, вправо и вверх. Направление маршрута на рисунке обозначено тонкой стрелкой. Этот маршрут называется «контур Бюргерса». Свидетельством здоровья кристалла является то, что при равном числе шагов вниз и вверх, а также влево и вправо маршрут замыкается. На второй картинке изображен участок кристалла, содержащий дефект — краевую дислокацию. Маршрут, подобный предыдущему, совершенный вокруг дислокации, не замкнется, что свидетельствует о нездоровье кристалла, о наличии в области, ограниченной маршрутом, дислокации. Линию машрута можно замкнуть стрелочкой-вектором так, как это сделано на рисунке. Этот вектор называется вектором Бюргерса. Легко понять, что он может принимать лишь значения, кратные значениям межатомных расстояний.

Итак, все как будто становится на свои места: есть идея, которая, во всяком случае качественно, устраняет противоречие между идеализированной теорией Френкеля и экспериментом; есть модели, свидетельствующие о том, что в природе осуществляются и иные ситуации, подобные той, которая возникает в кристалле при скольжении.

Все то, о чем я сейчас пишу с уверенностью, на заре развития учения о дислокациях выглядело правдоподобной догадкой теоретиков. Особой почтительности и доверия эта догадка тогда не вызывала. Многими она воспринималась как свидетельство гибкости ума теоретиков, которые способны придумать еще и не такое! Но, когда появились первые экспериментальные доказательства реальности режима «гусеничного» движения в кристалле, идея дислокации обрела мощь и определила развитие огромной главы физики твердого тела — физики пластической деформации.

В этом очерке нам, пожалуй, следует сделать еще три дела: поглядеть на дислокацию в модели БНЛ, убедиться в том, что скольжение происходит в области кристалла, богатой дислокациями, и попытаться построить простейшую теорию пластического деформирования кристалла вследствие движения дислокаций.

Первая из задач решается совсем просто. Для этого достаточно взглянуть на приводимые фотографии ансамбля пузырьков с дислокацией. Чтобы лучше увидеть дислокацию, смотреть на фотографию надо не обычно сверху вниз, а почти параллельно плоскости листа, повернув при этом лист так, чтобы направление взгляда (оно обозначено стрелками) совпадало с диагональными рядами пузырьков.

На одной из фотографий представлена модель краевой дислокации, — ее мы узнаем легко. На другой — модель дислокационной петли. Собственно не всей петли, а ее сечения плоскостью фотографии. Образовалась эта петля так: из кристалла была удалена часть атомной плоскости в форме круглого диска, возникшая при этом полость «схлопнулась», при этом оставшаяся незавершенная плоскость (удален диск!) оказалась ограниченной замкнутой линией. Она и является дислокационной петлей.