Выбрать главу

А вообще, правильно ли, что специалист, работая с одним-двумя объектами, пытается дать ответ на вопрос, общий для всех живых организмов? В самом деле, один организм живет в условиях с резко выраженными суточными изменениями; другой, например куколка насекомого, находится под толстым слоем земли или в такой глухой щели, где одинаково темно и ночью и днем. Почему бы ей не воспринимать необычные сигналы времени? Это было бы биологически вполне обоснованно. Тем более, известно, что насекомые чувствительны к электрическим полям, уровню ионизации воздуха и некоторым другим геофизическим факторам. В частности, недавно было обнаружено, что ритмы пещерных кузнечиков, живущих в постоянной темноте, имеют приблизительно 12- и 24-часовые периоды. Максимумы этих ритмов соответствуют максимумам напряжений земной коры, которые возникают, подобно морским приливам, под воздействием притяжения Луны и Солнца.

Ритм служит организму не только для того, чтобы согласовывать его поведение с ходом внешних условий. Ведь «живые часы» — это, как мы уже говорили, лишь образный термин. Дело обстоит гораздо сложнее. Уже давно известно, например, что двигательная активность золотистых хомячков имеет четко выраженный спонтанный ритм. Но Э. Бюннингу удалось показать, что и у кусочка кишечника хомячка, помещенного в сосуд с физиологическим раствором, тоже можно обнаружить ритм: его перистальтические движения меняются в зависимости от времени суток. Где же в таком случае локализованы часы хомячка?

Сейчас уже ни для кого из ученых не секрет, что каждый процесс в каждой живой клетке более или менее ориентирован во времени. Многоклеточный организм несет в себе сложнейшую иерархическую систему «живых часов». Эта «временная организация биологических систем» жизненно необходима. Ни один организм не может существовать без согласования во времени всех внутри и внеклеточных процессов.

Временная организация живой системы — это не что-то сугубо автономное; для нее необходимы внешние сигналы, влияние естественной ритмической среды. Некоторое время организм, по-видимому, может существовать в аритмичной среде. Но подобное нарушение временной организации — отсечение ее внешней компоненты — рано или поздно сказывается на состоянии организма, приводя к снижению его жизнеспособности и, в конечном счете, к гибели. Как бы ни был развит спонтанный ритм — он один не может заменить ритмическое многообразие среды. Совсем недавно К. Питтендраю и его сотрудникам удалось показать, что условия постоянного освещения, а также неестественных световых режимов (не кратных 24 часам) резко снижают продолжительность жизни дрозофил. Мы в своих экспериментах обнаружили, что ритм дрозофил заметно нарушает не только постоянный свет, но и постоянная темнота.

Теперь несколько слов об исследователях, работающих над самыми разными проблемами биоритмологии. Автор знакомит нас с работами многих крупнейших ученых мира. И все же его выбор в той или иной мере случаен. Иначе он несомненно остановился бы более подробно на работах физиолога-медика Ф. Халберга, биохимика Дж. Гастингса, экологов Дж. Клаудсли-Томпсона и Ф. Корбета.

Много интересного можно было бы рассказать о работах Й. Шиманского, выполненных в начале нашего века, о блестящих исследованиях в области ориентации животных и физиологии суточных ритмов, которые проводятся под руководством профессора Г. Бирукова в Геттингенском университете (ФРГ).

Крупнейший советский исследователь А. Л. Чижевский всю свою жизнь занимался изучением влияния солнечных многодневных и многолетних ритмов на биологические объекты. Написанные им в двадцатые годы статьи признаны классическими. Больше всего его интересовало влияние циклов солнечной активности на частоту заболеваний и физиологическое состояние человека.

Вопросом об измерении времени живыми организмами интересовался И. П. Павлов; продолжатели его работ М. Е. Лобашев и В. Б. Савватеев, изучая так называемый «рефлекс на время», поставили ряд интереснейших экспериментов.

Широко известны капитальные работы по экологической физиологии ритмов, проведенные под руководством А. Д. Слонима. В несколько ином плане решался вопрос о ритмах Н. И. Калабуховым. Совсем другой аспект биоритмологии — ритмические колебания иа молекулярном уровне и другие физико-химические процессы, вероятно, лежащие в основе измерения времени, — разрабатывается С. Э. Шнолем, Е. Е. Сельковым и другими.