Выбрать главу

однако, не буду здесь перечислять, какие открытия принадлежат каждому из этих математиков в отдельности, так как это можно узнать [з предисловия к дополнениям, которыми Лагранж снабдил «Алгебру» Эйлера, и из недавно вышедшего сочинения Лежандра, о котором ско-ю будет упоминаться; кроме того, об этом говорится в соответствующих юстах настоящих «Арифметических исследований».

Целью этот труда, издать который я обещал еще пять лет н!азадт •ыло довести до общего сведения те исследования по высшей арифме-пке, которыми я занимался частью ранее, частью позже указанного рока. Однако, чтобы никто не удивлялся, что я здесь повторяю предмет :очтн с самого начала и заново произвожу многие исследования, кото-ыми уже занимались другие, я считаю необходимым указать на то, то когда я в начале 4795 г. впервые принялся за исследования та-ого рода, я ничего не знал о том, что было сделано за последнее ремя в этой области, и все средства, при помощи которых я получал вой результаты, я изобретал сам. Именно, занимаясь в то время другой аботой, я случайно натолкнулся на одну изумительную арифметпче-чую истину (если не ошибаюсь, она изложена в виде теоремы i* п. 108), и так как она пе только показалась мне прекрасной сама по себе, но и навела на мысль, что она связана и с другими выдающимся фактами, я со всей энергией взялся за то, чтобы выяснить принципы, па которых она основывается, и получить строгое ее доказательство. После того как это желание, наконец, осуществилось, прелесть этих исследований настолько увлекла меня* что я уже не мог их оставить; так и получилось, что в то время как одни все время про-лагали дорогу другим в том, что изложено в первых четырех разделах этого труда, я сам имел о подобных работах других математиков лишь приблизительное представление. Когда же мне, наконец, представилась возможность ознакомиться с работами этих выдающихся умов, то я понял, что большая часть моих рассуждений была посвящена уже давно известным вещам, но с тем большей охотой решился я следовать по стопам этих ученых, которые двигали арифметику вперед; так возникли различные исследования, часть которых составляют разделы V, VI, VII. Когда я, спустя некоторое время, принял решение опубликовать результаты моих усилий, то я, идя навстречу желаниям многих, тем охотнее решил не выбрасывать ничего также и из указанных более ранних исследований, что, во-первых, в то время еще не было книги, по которой можно было бы ознакомиться с рассеянными по академическим изданиям работами других математиков по этому вопросу; затем, потому, что многие из этих исследований были совершенно новыми и проводились новыми методами, и, наконец, потому, что все они так тесно переплетались как между собой, так и с более поздними исследованиями, что новые неудобно было бы изложить достаточно ясно без того, чтобы сначала не напомнить некоторые другие вещи.

Тем временем появилось сочинение уже и до того имевшего большие заслуги в высшей арифметике Лежандра («Essai d’une theorie des nombres, год VI), в котором он не только тщательно обработал и привел в порядок все, что было сделано в этой науке до сих пор, но и привнес очень мпого своего собственного. Так как эта книга попала ко мне в руки слишком поздно, когда большая часть моего сочинения была уже готова, я ее нигде не упоминал в тех случаях, когда аналогия рассматриваемых вопросов могла бы дать к этому повод; лишь в отношении нескольких ее мест я счел необходимым сделать некоторые замечания в дополнениях, которые, как я надеюсь, любознательный читатель не оставит без внимания.

Во время печатания этого сочинения, которое несколько раз прерывалось и из-за многочисленных задержек растянулось на четыре года, я не только продолжал далее те исследования, которые начал еще ранее, но опубликование которых решил отложить до другого случая, чтобы не делать книгу слишком объемистой, но и принялся 8а многпе новые исследования. Кроме того, несколько исследований, которые я по той же причине только вскользь упоминал, так как более подробное расмотрение представлялось мне необходимым (например, те, о которых говорится в п. п. 37, 82 и следующих, и в других местах), в дальнейшем были продолжены и дали повод к болео общим исследованиям, которые представляются достойными опубликования (ср. также сказанное в дополнениях относительно п. 306). Наконец, так как книга вследствие значительного размера раздела V оказалась гораздо объемистее, чем я ожидал,— многое, что первоначально для нее предназначалось, и в частности весь восьмой раздел (который в этом сочинении уже упоминается в нескольких местах, и который содержит общее изложение теории алгебраических сравнений любой степени), пришлось выбросить. Все эти вещи, которые легко могут заполнить том, равносильный настоящему, я опубликую, как только для этого представится случай.