Выбрать главу

ЖМУРКИ С ЭЛЕКТРИЧЕСТВОМ

«Повсеместная работа электрических установок и приборов была бы невозможна без глубокого научного понимания природы электричества.»

(Из сборника «Шутки больших учёных»)

«В некотором царстве, в некотором государстве, долбил себе по клавишам один скромный программист. Звали его Вася Пупкин — или, там, Билли Сукинсон. Долго ли, коротко ли он долбил, но вот однажды компилятор выдал добро на программку, которая рисовала на экране монитора синие и красные шарики. Тучи синих и красных шариков. Да не простых, а с заданными свойствами.

Свойства шарики имели: Танцевать они умели! Только танцы шли не сами, А — по заданной программе. И программа та была Остроумна, весела!

Чтобы начались эти весёлые танцы, требовалось, например, сгруппировать шарики на экране так, чтобы в одном месте доминировали синие, а в другом — красные. После чего «отпустить» их, предоставив «самим себе». И — мама дорогая! — шарики начинали двигаться так, чтобы выровнять количества синего и красного цветов на всех местах экрана. У тех, кто наблюдал это дивное зрелище, создавалось впечатление, что шарики разного цвета притягиваются друг к другу, а шарики одинакового цвета — отталкиваются друг от друга. Но это ещё не всё! Можно было принудительно организовать коллективное движение шариков одного цвета — например, вдоль некоторой замкнутой кривой. И — мама дорогая! — соседние шарики, предоставленные «самим себе», старались, по возможности, компенсировать этот принудительный поток цвета. Если принудительно двигались синие шарики, то свободные красные шарики искривляли своё движение так, чтобы двигаться в попутном направлении с синим потоком, а свободные синие шарики — наоборот, во встречном. Создавалось впечатление, что, помимо действия покоящихся шариков друг на друга, движущиеся шарики тоже действуют друг на друга. Всё логично: если статическое действие стремится устранить статическое разделение синего и красного цветов, то динамическое действие стремится компенсировать потоки синего или красного цвета.

И вот, на одном Терминале сидел Дремучий пользователь. Увидел он эти танцующие шарики — и чуть не тронулся. Играл, играл, и всё не мог наиграться. Видя только монитор и не подозревая о том, что танцы шариков обеспечиваются программой, Дремучий пользователь глубоко убедился в том, что свойства действовать друг на друга присущи самим шарикам. Имея незаурядный пытливый ум, Дремучий пользователь стал придумывать — что же это за свойства у шариков, которые порождают силы, заставляющие шарики танцевать. Из кожи вон лез этот пользователь. Напрягал свой незаурядный пытливый ум — до пара из ушей. Да толку-то? Жаль беднягу, зря старался. Не в свойствах шариков было дело. Из свойств у шариков был лишь цвет — синий или красный. Но это свойство не порождало никаких сил. Наличие цвета у шарика было лишь знаком для программы, которая синими шариками рулила так, а красными — этак…»

Если в этой байке под «синим и красным цветом» разуметь «отрицательный и положительный электрический заряд», а под Дремучим пользователем — ортодоксальную физическую науку, то сегодняшний уровень понимания этой наукой природы электрического заряда окажется обрисован точь-в-точь. Неспроста авторы учебников по электричеству ловко уходят от вопроса о том, что такое электрический заряд. «Вообще говоря, это — количество электричества» — поясняют нам. Класс! А электричество — это что? Вообще говоря, электричество — это и есть электрические заряды, да? Впрочем, авторы учебников дают одну наводку: заряд — это свойство, порождающее взаимодействие зарядов на расстоянии. А если их спросить: «А «порождающее» — как?» — то они с облегчением разъясняют: «А так, как описывают наши замечательные математические формулы! Идите, дети, учите мат-часть!» Хотя, с некоторых пор детям стали давать подсказочку: заряды, мол, не просто действуют друг на друга на расстоянии. Заряд — он, якобы, создаёт электромагнитное поле, а уже оно-то действует на заряды. Как, физически, «создаёт», как «действует» — это, опять же, большой-большой секрет. «Привыкайте довольствоваться малым, — поучают детей, — и полностью удовлетворяться одной лишь красотой математического аппарата!»

Этот высоконаучный подход, с железобетонно расставленными приоритетами, процветал не всегда. Фарадею и Максвеллу, например, пришлось работать в атмосфере дикого разгула плюрализма. Любое новое научное слово вполне типично отзывалось: быстренько находились деятели, которые начинали гнуть прямо противоположную линию. Стоило кому-то заикнуться о том, что носителями электричества являются частицы вещества, как тут же лезли умники с претензиями на то, что электричество — это независимый от вещества флюид (невесомая жидкость). Этот флюид, якобы, способен втекать в кусок вещества и, с неменьшим успехом, вытекать из него. Электричество одного знака, мол — от избытка этого флюида, а электричество другого знака — от недостатка. Ещё более продвинутые специалисты толковали не об одном флюиде, а сразу о двух — по числу типов электричества. И стоило кому-то вдохновиться идеей электрических флюидов и начать строить их физическую модель, как тут же подавали голос сторонники чисто описательного подхода, избегавшие физических гипотез — имеем, мол, математический инструмент для расчётов, и хорошо, а сверх этого, мол, не надо ля-ля. Идя навстречу этим описателям, поднимали свои флаги фанаты концепции о том, что наэлектризованные тела действуют друг на друга на расстоянии непосредственно — чисто-конкретно математически. Но тут же раздавались ехидные замечания о том, что «это — не по-физически», что для взаимодействия наэлектризованных тел на расстоянии непременно нужен посредник. Физическая модель этого посредника — чёрт с ней, обойдёмся и без неё, но сам посредник нужен позарез! Иначе — «не по-физически»! Весь этот раздрай, что особенно пикантно, шёл ещё и по национальному признаку. Британские учёные тузили немецких — уворачиваясь при этом от пинков своих французских коллег. Потери из-за «дружественного огня» были огромны.