Выбрать главу

Новый проект назвали SCORE (Stove for Cooking, Refrigeration and Electricity) – печь для готовки, охлаждения и получения электричества. Самое интересное, что комбайн основан на технологии термоакустических преобразователей, которые до сих пор использовались лишь в космосе или в военных целях для охлаждения электроники или генерации электроэнергии. Только эти передовые технологии, надеются авторы проекта, позволят создать простое устройство почти без движущихся частей и не требующее обслуживания, цена которого ($30–40) будет на порядок меньше, чем у электрогенераторов такой же мощности.

По-видимому, первыми с термоакустикой столкнулись стеклодувы, еще в XIX веке. Они иногда слышали чистый звук, издаваемый неравномерно нагретыми сосудами. Тогда же эффект генерации звука при наличии перепада температур был изучен и описан в трудах классиков науки. Но на практике с термоакустической неустойчивостью серьезно начали работать лишь в середине прошлого века создатели ракетных двигателей, в соплах которых большие перепады температур приводили к самовозбуждению звуковых колебаний, способных разрушить всю конструкцию. И лишь в восьмидесятых годах было осознано, что можно использовать и обратный эффект перекачки тепла звуковыми волнами. На основе термоакустического эффекта стали разрабатывать тепловые насосы, то есть холодильники для спутников и радаров. Возник интерес и к термоакустическим генераторам электроэнергии.

Механизм работы термоакустического устройства легче всего понять на примере теплового насоса. В простейшем случае он состоит из настроенной в резонанс со звуковыми колебаниями трубы, в которую помещен кусок пористой керамики или пучок параллельных заполненных газом тонких трубок. С одной стороны трубы помещают динамик, похожий на тот, что используют в звуковых колонках. В возбуждаемых динамиком стоячих звуковых волнах газ колеблется взад и вперед, нагреваясь при сжатии и охлаждаясь при расширении. Этот перепад температур мал – всего две сотые градуса даже для громкого звука на болевом пороге нашего слуха (120 децибел). Но если правильно подобрать материал и размеры трубок, этого оказывается достаточно, чтобы обменивающийся с ними теплом газ создал в пучке необходимый градиент температуры.

Точно так же, но в противоположном направлении работает и термоакустический генератор, в котором звуковые колебания возникают при поддержании перепада температур в пучке трубок. А уже эти звуковые колебания нетрудно превратить в электрический ток с помощью того же динамика, который будет работать как микрофон, то есть линейный электрогенератор. Если же в качестве динамика использовать пьезопластину, в таком устройстве совсем не будет движущихся частей. Первые термоакустические холодильники и генераторы были примерно вдвое менее эффективны, чем обычные компрессорные холодильники и двигатели внутреннего сгорания. Однако постоянное совершенствование их конструкции позволило ликвидировать отставание, а в некоторых случаях даже добиться эффективности около 40%.

В "кухонном комбайне" для развивающихся стран будет два пучка трубок и один динамик между ними в общей трубе-резонаторе, которая конструктивно соединена с плитой. Горящие дрова одновременно с кастрюлями и сковородами будут нагревать один из концов первого пучка – в нем возникнут звуковые колебания с частотой, по предварительным расчетам, около пятидесяти герц. Эти звуковые колебания будут раскачивать генерирующий электричество динамик и создавать перепад температур во втором пучке, работающем как холодильник. Конструкция гениально проста, и будем надеяться, что она действительно окажется эффективной.

Такой генератор, наверное, придется весьма кстати, если понадобится подзарядить "стодолларовый ноутбук" ребенка. Однако не очень понятно, станет ли хорошая хозяйка в жаркой Африке день и ночь что-то жечь, чтобы работал ее холодильник. Впрочем, до конца этого проекта еще пять лет, а первые рабочие прототипы обещаны лишь через три года, так что за это время многое может измениться, включая и саму концепцию устройства. ГА

Беспроводная энергетика

Новую технологию беспроводной передачи энергии продемонстрировали физики из Массачусетского технологического института (МТИ). Две магнитные антенны диаметром 60 см, настроенные на одну резонансную частоту, обеспечили энергией лампочку мощностью 60 Вт.

Как дистанционно зарядить беспроводное устройство вроде ноутбука, сотового телефона или домашнего робота? Для передачи энергии можно использовать электромагнитные волны, но они будут уносить львиную часть энергии в окружающее пространство… Работающие на высоких частотах узконаправленные антенны или лазеры опасны. Не дай бог, что-то окажется на пути концентрированного пучка электромагнитного поля. А связанные, как в обычном трансформаторе, магнитные катушки эффективно работают только в непосредственной близости друг от друга.

Год назад научная группа из МТИ предложила использовать так называемые нераспространяющиеся (evanescent) электромагнитные волны. Они быстро затухают вблизи излучателя и не уносят энергии в пространство, но их энергию можно использовать, если на расстоянии меньше длины волны от источника поместить настроенный в резонанс приемник.