Выбрать главу

Не секрет, что современные графические процессоры при выполнении определенных типов задач обеспечивают гораздо большую производительность по сравнению с чипами общего назначения. Достигается это за счет параллельной обработки данных. Компания AMD решила воспользоваться преимуществами архитектуры видеочипов и создала потоковый процессор FireStream 9170, предназначенный для решения широкого круга задач, хорошо поддающихся распараллеливанию.

Стоит сразу оговориться, что первый потоковый процессор Stream на основе ядра ATI R580 появился еще в прошлом году. Однако AMD не стала его активно продвигать на рынке. С FireStream 9170 ситуация должна сложиться несколько иначе. Предполагается, что новинка будет востребована университетами, научно-исследовательскими организациями и крупными компаниями для выполнения ресурсоемких вычислений.

FireStream 9170 основан на ядре Radeon HD 3870, содержит 320 "потоковых ядер" и обеспечивает быстродействие до 500 гигафлопс. Чтобы понять, много это или мало, стоит привести небольшое сравнение. Находящийся сейчас на последнем месте списка 500 мощнейших суперкомпьютеров мира комплекс обладает пиковой производительностью примерно в десять терафлопс. В этой системе используется 1344 процессора Xeon 1,86 ГГц. Таким образом, если верить AMD, то весь этот "легион" (при решении определенных задач) можно заменить всего двумя десятками потоковых процессоров FireStream 9170.

Ускорители на основе этого чипа получат 2 гигабайта памяти GDDR3, а для их установки потребуется слот PCI Express 2.0 x16. Заявленное энергопотребление не превышает 150 Вт. AMD уже подготовила набор инструментов, при помощи которых программисты смогут задействовать все возможности нового процессора. Компания намерена начать продажи в первом квартале следующего года - стоить FireStream 9170 будет две тысячи долларов.

Впрочем, вряд ли следует рассчитывать, что отрасль с распростертыми руками примет новую разработку. Не стоит забывать, что аналогичные решения семейства Tesla уже предлагает компания nVidia. ВГ

Вторая жизнь кремния

IBM предложила новую технологию переработки бракованных кремниевых пластин с целью их последующего применения в качестве основы для солнечных батарей.

Кремниевые пластины незаменимы при изготовлении процессоров, микрочипов памяти и прочих полупроводниковых электронных компонентов. По оценкам Semiconductor Industry Association, ежедневно в мире производится 250 тысяч кремниевых подложек, из которых, как полагают в IBM, 3,3% оказываются негодными для использования. Таким образом, за год отбраковывается около трех миллионов пластин. Иногда им находится применение, например, на дефектных подложках проводят различные тесты в ходе производства. Однако в большинстве случаев "вторсырье" продают на сторону, предварительно уничтожив сами микросхемы - никому не хочется, чтобы его секреты утекли к конкурентам.

Электронные цепи с подложки обычно удаляют при помощи агрессивных растворов или перемалыванием кремниевого "блина" в мелкую крошку. Однако в IBM нашли более дешевый и экологически чистый способ "стирания" элементов микросхем. Методика заключается в шлифовке поверхности пластины абразивом с применением деионизированной воды. Такой способ позволяет удалить электронные цепи, почти не уменьшая толщины подложки. После очистки пластина может быть отправлена производителю солнечных батарей, который в этом случае экономит, по разным оценкам, от 30 до 90% затрат на энергию при производстве сырья.

Корпорация IBM уже внедрила новую методику на своем предприятии в Берлингтоне (штат Вермонт) и в ближайшее время намерена начать ее использование на производственных линиях в Ист-Фишкилле (штат Нью-Йорк). Кроме того, предполагается, что технология будет передана другим полупроводниковым производителям (правда, неясно, на каких условиях). ВГ

Windows секонд-хэнд