Выбрать главу

 В результате мы имеем то, что имеем - очень легкую и прочную броню, не боящуюся ни лазера, ни снаряда, ни нагрева. Чтобы пробить броневой лист, состоящий из нескольких таких слоев, надо хорошо постараться. При прохождении одного слоя энергии на проход через второй уже просто не остается, а граница между слоями с разными механическими свойствами - препятствие, которое для БПС и КС вообще трудно преодолимо. Для пробития брони необходимо пробить все слои, один за одним, в одном и том же месте, а это не так то просто. Именно этим объясняется такая устойчивость тяжелых роботов - для поражения внутренней структуры пришлось разбить почти всю броню, послойно. С легкими, у которых всего один слой, справиться было гораздо легче.

 По нашему мнению, примерная технология производства брони следующая. Вначале формируется скелет броневого листа, та самая волокнистая керамическая структура. Затем он заливается расплавом брони, из которого в процессе застывания выделяются пузырьки газа и образуют каверны. Сам газ вступает в химические реакции с какими-то компонентами расплава и образует пластик, заполняющий каверны. После, а может, и во время остывания, происходит насыщение углеродом и выпадение в виде карбидов около границ слоев. Примерно так. Боюсь, мы еще многого не понимаем и нам еще предстоит большая работа. Повторить процесс и изготовить такую же или хотя бы похожую броню мы не в состоянии. И не уверен, что вообще сможем в ближайшие лет десять.

 Хочу сразу сказать - описания производства в полученных нами данных нет. Во Внутренней Сфере заводов, выпускающих броневые плиты, мало и каждый из них постоянно находится под охраной и является стратегическим объектом. Данная технология была... то есть будет разработана примерно в 25-28 веках, так что можете представить себе уровень технологии. Единственное, что мы можем на данный момент - продолжать исследования и адаптировать полученные данные для современного производства. У меня все.

 Несколько дней спустя. Тот же город. Почти такой же зал. Даже кафедра похожа. Вот только состав гостей - совсем другой: людей в форме почти нет, зато очень много в штатском. Да и место называется по другому - химический факультет МГУ.

 - Получены были 6 конечностей - 'руки' и 'ноги' наиболее пострадавших роботов. Как нам объяснили - которые не подлежат восстановлению. Материал в большинстве своем тоже получил те или иные повреждения, но годился для исследования. Работать пришлось в плотном контакте с несколькими ВУЗами и совместно с физиками и инженерами. Они имели свои задания, но для полноты картины пришлось объединиться. Были случаи, когда личная неприязнь и амбиции перевешивали осознание важности и нужности работы. Это нас не красит, но это есть. К счастью, подобные проблемы были вовремя замечены и улажены, иногда - довольно жестко. Сейчас над проблемой работает устоявшийся, слаженный коллектив единомышленников, уже добившийся определенных успехов.

 Представленные образцы - это полимеры, имеющие очень сложное строение. Это гомоамфифильный элементоорганический полимер, обладающий свойствами полупроводника по типу p-n перехода, имеющий линейное циклическое строение... Простите, что? Что? Хорошо, попробую проще.

 Если проще описать строение, то, наверно, так. Полимер имеет вид крученой нити, на которую нанизали множество дисков на равном расстоянии друг от друга. Каждый диск представляет собой группу радикалов сложного состава и сложной пространственной формы. Внешняя оболочка такого 'диска' имеет преобладание положительно заряженных молекул, то есть недостаток электронов, а внутри 'диска' - преобладание отрицательно заряженных атомов - переизбыток электронов. Силы электростатического притяжения внутри 'диска' уравновешивается силой химических связей.

 Однако при пропускании электрического тока картина распределения электронов в 'диске' кардинально меняется. Происходит резкое перемещение электронов на одну сторону 'диска'. Одна сторона 'диска' приобретает положительный заряд, другая сторона - отрицательный. Центр 'диска' превращается в диэлектрик, а сам 'диск' превращается в что-то типа конденсатора. Как следствие, возникает сила электростатического притяжения между 'дисками', и они начинают сближаться. Нить начинает сжиматься, но при определенном положении сближение прекращается из-за сближения витков 'нити' - химическая связь действует как пружина, препятствуя дальнейшему сближению 'дисков'. При прекращении подачи тока или смене полярности происходит обратный процесс - электроны снова перераспределяются в первоначальное положение и 'диски' снова начинают отталкиваться. 'Нить' начинает разжиматься. Причем усилия и скорость сжатия-растяжения прямо зависят от силы тока, поданной на концы 'нити'.