Выбрать главу

«Да, есть странные утверждения, вроде P k ( k ), для которых мое понятие доказуемости или ИСТИНЫ расходится с вашим интуитивным понятием истинности, но подобные выражения едва ли встречаются в серьезной математике (по крайней мере не в такой, которая меня интересует), поскольку они абсурдно усложнены и неестественны для математики».

Несомненно, что утверждения вида P k ( k ), будучи полностью выписанными, были бы чрезвычайно громоздки и выглядели бы странно для числовых математических выражений. Однако за последнее время были выдвинуты сравнительно простые выражения приемлемого с точки зрения математики характера, которые эквивалентны утверждениям Геделя [74]. Они недоказуемы на основании обычных аксиом арифметики, однако же следуют из некоего свойства «самоочевидности», которым обладает сама система аксиом.

Отсутствие интереса к «математической истине», исповедуемое формалистами, кажется мне очень странной позицией в приложении к философии математики. Более того: она совсем не так прагматична, как представляется. Когда математики проводят свои выкладки, они не намерены постоянно проверять, могут ли они быть сформулированы посредством аксиом и правил вывода некоторой сложной формальной системы. Единственно, что необходимо — быть уверенным в правомерности использования этих рассуждений для установления истины. Доказательство Геделя удовлетворяет этому требованию, так что P k ( k ) является математической истиной с таким же правом, как и любое другое утверждение, полученное более стандартным путем с использованием изначально заданных аксиом и правил вывода.

Процедура, которая напрашивается сама собой, заключается в следующем. Давайте положим, что P k ( k ) — совершенно верное утверждение (переобозначим его здесь как G 0 ). Тогда мы можем присоединить его к нашей системе в качестве дополнительной аксиомы. Естественно, что наша новая система будет, в свою очередь, содержать новое утверждение Геделя, скажем, G 1 , которое также будет истинным числовым выражением. Соответственно, мы можем и  G 1 добавить в нашу систему. Это даст нам новую улучшенную систему, которая также содержит новое утверждение Геделя G 2 (опять же совершенно справедливое); и мы сможем снова добавить его к системе, получая следующее утверждение Геделя G 3 , которое мы тоже присоединяем — и так далее, повторяя этот процесс неограниченно. Что мы можем сказать о получившейся в результате системе, где мы используем весь набор G 0, G 1, G 2, G 3…. как дополнительные аксиомы? Может ли эта система быть полной? Поскольку мы теперь имеем неограниченную (бесконечную) систему аксиом, то возможность применения процедуры Геделя совсем не очевидна. Однако, это последовательное включение утверждений Геделя является в высшей степени систематичной схемой, результат применения которой может быть истолкован как обычная конечная система аксиом и правил вывода. Эта система будет иметь свое собственное утверждение Геделя  G ω  которое мы также сможем к ней присоединить, получая новую систему и с ней — еще одно утверждение Геделя G ω+1 . Продолжая, как и ранее, мы получаем набор утверждений G ω , G ω+1 , G ω+2 , G ω+3 , каждое из которых истинно и может быть включено в нашу формальную систему. Сохраняя свойство строгой систематичности, этот процесс вновь приводит нас к созданию новой системы, которая охватывает все созданные к этому моменту аксиомы. Но и эта система, в свою очередь, имеет свое собственное утверждение Геделя, скажем, G ω+ω — которое можно переписать как G ω2 , и мы можем начать всю процедуру заново. В результате этого мы получим новый бесконечный, но систематический, набор аксиом G ω2 , G ω2+1 , G ω2+2 , и т. д., приводящий к еще одной новой системе — и новому утверждению Геделя G ω3 . Воспроизводя весь процесс, мы получаем G ω4 , потом — G ω5 и так далее. И эта схема также будет полностью систематичной и даст свое собственное утверждение Геделя G ω 2 .

вернуться

74

В нижеследующем прописные буквы будут представлять натуральные числа, а заглавные — конечные множества натуральных чисел. Пусть m → [ n , k , r ] представляет такое утверждение: «Если X = { 0 , 1 …., m }, каждое из подмножеств которого длиной в k элементов приписано к r ящикам, то существует „большое“ подмножество Y , принадлежащее X и имеющее по крайней мере n элементов, такое, что все подмножества Y из k элементов попадут в один ящик». Здесь «большое» означает, что число элементов, входящих в Y , больше самого маленького из натуральных чисел, принадлежащих Y . Рассмотрим теперь следующее утверждение: «При любых k , r , n существует m 0 такое, что при m m 0 утверждение m  → [ n , k , r ] всегда справедливо». Дж. Парисом и Л. Харрингтоном [1977] было доказано, что это положение эквивалентно геделевскому утверждению для стандартных (введенных Пеано) аксиом арифметики, которое не выводится из этих аксиом и которое позволяет делать утверждения о тех аксиомах, которые «очевидно верны» (в данном случае оно говорит, например, о том, что утверждения, выведенные из аксиом, сами будут справедливыми).