Выбрать главу

Начиная с 1910 года Владимир вел под руководством Розинга исследования в его лаборатории. После революции Зворыкин эмигрировал в США. В фирме «Вестингауз электрик» в Питтсбурге он приступил к реализации давно вынашиваемых идей электронного телевидения. С головой уйдя в работу, Зворыкин уже в 1923 году подал заявку на патент передатчика изображений с электронно-лучевой трубкой, содержащей пластинку, покрытую слоем фотоэлектрического материала. Впоследствии ему пришлось сожалеть о приведенном в заявке описании прибора, так как оно стало предметом длительного судебного разбирательства.

Свет от изображенного предмета вызывал электронные излучения различной интенсивности, зависящие от яркости объекта. Это электронное излучение усиливалось ионизацией паров аргона, которые заполняли контейнер. Таким образом, система Зворыкина позволяла передавать и получать телевизионное изображение чисто электронным путем, используя развертку изображения электронным лучом, без всякого механического движения. Это было существенным преимуществом зворыкинской системы, идея которой, как он сам все время подчеркивал, принадлежала Розингу.

В 1925 году, когда предыдущий патент еще гулял по бюрократическим инстанциям патентного управления США, а автор тщетно пытался заменить в нем один фотоэлектрический материал другим, Зворыкин подал на патентование другой проект, относящийся уже к цветной системе телевидения. Этот проект прошел на удивление быстро: в 1927 году права Зворыкина были признаны в Великобритании, а в 1928-м – в США. Собственно, этого было уже достаточно, чтобы считаться изобретателем телевидения. Однако примерно в то же время ряд аналогичных проектов был запатентован или представлен на патентование в США, Великобритании, СССР, Франции, Германии и Японии. Сравнение их осложняется тем, что авторы использовали неустоявшуюся терминологию на своих языках, а порой скрывали наиболее важные элементы патента. Но система, созданная Зворыкиным, была, по-видимому, лучше доработана. Одно время казалось, что еще одно усилие, и система телевидения будет создана.

Все 1930-е годы прошли в ожесточенной конкурентной борьбе десятков создателей систем телевидения. Только в Соединенных Штатах над этим успешно работали Файло Фарнсуорт, Джон Бэйрд, Эдвин Армстронг и многие другие. А сюда нужно приписать француза Пьера Шевалье, немца Манфреда фон Арденне, японца Кенджиро Такаянаги…

Трудность объяснялась тем, что при развертке передаваемого изображения световое воздействие каждого его элемента на фоточувствительный слой происходит в течение всего лишь миллионных долей секунды. Возбуждаемый при этом фототок оказывается чрезвычайно малым, его усиление представлялось труднореализуемым технически. Задавшись целью найти способ накапливать заряд точечных фотоэлементов, Зворыкин получил в 1931 году специальную электронно-лучевую трубку с мозаичной фоточувствительной структурой – иконоскоп. После успешных испытаний иконоскопа изобретатель вместе со своими помощниками принялся за разработку телевизионной системы в целом. В 1933 году была создана телевизионная система с разложением на 240 строк, в 1934 году – на 343 строки с чересстрочной разверткой.

На доработку зворыкинской системы ушло дополнительно 10 миллионов долларов, прежде чем система заработала, и 40 миллионов, прежде чем она стала приносить доход. Но зато вскоре новая телевизионная система позволила передавать полноценные изображения, которые принимались на кинескопах тоже зворыкинской системы. Три камеры передающей системы помогли устроить прямую передачу с Олимпийских игр 1936 года из Берлина. Телевизионная аудитория была, правда, еще не очень велика: принимающая система механического типа стояла в специально снятом театре в Лондоне.

В конце 1938 года Зворыкин наконец-то получил патент на электронное телевидение, которого ждал пятнадцать лет, – да, это был тот самый патент 1923 года, причем всего поступило одиннадцать заявок на установление приоритета! И почти у каждого из заявителей были какие-то основания участвовать в этой гонке. Зворыкин доказал, что если и использовал достижения своих конкурентов, то делал это законно, купив право на них.

Многие десятилетия после появления телевидения ведущие производители телевизоров лишь совершенствовали их узлы и детали. Изображение становилось четче и контрастнее, цвета – насыщеннее, звук – чище и мощнее.

В первую очередь это достигалось за счет усовершенствования сердца телевизора – кинескопа. От его качества зависит совершенство аппарата в целом. Как известно, изображение на экране формируется из сотен тысяч светящихся люминофорных зерен, которые располагаются в виде чередующихся вертикальных полос зеленого, синего и красного цветов. Они светятся под воздействием электронных лучей, которыми «обстреливают» экран три электронные пушки, «отвечающие» каждая за свой цвет. Специальные электромагниты фокусируют и отклоняют потоки электронов, а для того чтобы каждый луч засвечивал зерна определенного цвета, служит конструкция с продолговатыми отверстиями (теневая маска), расположенная позади экрана. Пересекаясь в отверстиях маски, лучи попадают на зерна «своего» цвета.

Отдельные фрагменты выглядят черными лишь по контрасту с соседними светлыми, между тем даже на этих участках люминофоры светятся, хотя и очень слабо. Следовательно, если сделать как можно темнее саму поверхность экрана, изображение станет более контрастным. Этого еще в 1988 году добились инженеры «Сони», изготовив кинескоп «Блэк тринитрон» с экраном из затемненного стекла. Одновременно это позволило уменьшить блики на поверхности от внешних источников света.

Иное решение для улучшения контрастности применила фирма «Тошиба»: вертикальные чередующиеся полосы люминофоров разделены тонкими черными полосками.

Поверхность экрана традиционного телевизора представляет собой часть сферы. Прямые линии вблизи краев на нем кажутся несколько изогнутыми. Кроме того, свет, проходя через стекло, претерпевает искажения тем большие, чем выше кривизна. В 1994 году «Сони» выпустила «Супер тринитрон» с экраном в виде части боковой поверхности цилиндра большого радиуса. Благодаря этому, а также другим новшествам, о которых речь пойдет ниже, компания сделала крупный шаг на пути к максимально реалистичному изображению. Конкуренты – «Панасоник» и «Филипс» – ответили моментально, изготовив свои кинескопы со сверхплоским экраном.

С каждым новым поколением телевизоров уменьшалась их глубина – расстояние от экрана до задней стенки. Правда, это потребовало увеличения угла отклонения луча. Разработчики получили новую головную боль. Ведь пятно от электронного луча вблизи края экрана деформировано, резкость и проработанность деталей изображения уменьшились. Инженеры видоизменили конструкцию электронной пушки. Опять впереди оказалась «Сони»: пушка «Тринитрон» объединила три источника лучей (вместо трех раздельных пушек). За счет равной длины пути всех лучей цвета сводятся почти идеально.

При длительной работе телевизора теневая маска, традиционно изготавливаемая из сплавов железа, нагревается и деформируется. Как следствие – нарушение цветов. Поэтому в ряде кинескопов стала использоваться маска из железоникелевого сплава (инвара), имеющего очень низкий коэффициент температурного расширения. Но самая необычная конструкция этого устройства использована опять же в «Супер тринитрон» фирмы «Сони». Японские инженеры отказались от цельной маски с отверстиями и разработали сложный набор из тонких струн, закрепленных вертикально в специальном каркасе. В результате повысились прозрачность маски и светоотдача экрана.