Выбрать главу

Например, в кремнии электроны могут передвигаться относительно свободно. Но у арсенида галлия степень свободы электронов еще в 6 раз выше. Поэтому в мобильниках и приемниках спутниковых сигналов используются микропроцессоры на основе именно арсенида галлия, а не кремния.

Это свойство, которое называется подвижностью электронов, в графеновых пленках близко к абсолютному идеалу; электроны практически не рассеиваются и весьма мало реагируют на изменения внешней среды. Однако произвести точные замеры свойств графена ученым долгое время не удалось – уж слишком тонка пленка. А потому только недавно выяснилось, что по подвижности электронов графен превосходит все известные на сегодня вещества.

«По нашим данным выходит, что подвижность электронов в графене в 10–20 раз выше, чем в арсениде галлия, – уверяет профессор Гейм. – Этот качественный скачок открывает блестящие возможности разработки новых еще более скоростных компонентов схем микроэлектроники. Тут уже речь пойдет не о мега– и гигагерцах, как в нынешних компьютерах, а о террагерцах, то есть в 1000 раз более высоких показателях».

Далее ученые приступили к созданию графенового полевого транзистора, который, используя электрическое поле, обеспечивает так называемый баллистический транспорт электронов, при котором они практически не рассеиваются.

В общем, оказалось, что баллистические транзисторы работают гораздо быстрее, чем обычные кремниевые устройства такого рода. А потому открытие Гейма – Новоселова вызвало большой интерес к графену как к материалу для электроники нового поколения.

Однако есть и определенные препятствия на пути внедрения графеновых структур в производство. Во-первых, нет еще технологии, которая бы позволила наладить массовое производство графеновых структур с одинаковыми показателями – пока пленки делают практически вручную. Кроме того, первые транзисторы на графеновой основе оказались весьма медленными и не могут пока составить серьезную конкуренцию нынешним микросхемам.

Впрочем, как полагают энтузиасты нового направления, это лишь трудности роста молетроники – микроэлектроники, схемы которой оперируют уже с отдельными молекулами. «С первыми кремниевыми транзисторами исследователи тоже повозились изрядно, – вспоминает Константин Новоселов. – И находились скептики, которые говорили, что из этой затеи ровным счетом ничего не получится и лучше радиоламп вряд ли можно что-то придумать. Так что лет через двадцать, глядишь, новое поколение электронщиков будут вспоминать о нынешних микросхемах примерно так же, как ныне мы рассуждаем о тех же радиолампах».

Чудеса «самолечения»

То, что царапина на коже заживает сама собой за неделю, никого не удивляет. И, заболев, люди чаще всего выздоравливают. Но почему тогда нельзя создать саморемонтирующиеся материалы и машины? Именно этим вопросам задались ученые из Высшей промышленной школы физики и химии в Париже по главе с профессором Людвигом Леблером. И кое-чего им уже удалось добиться…

Новый удивительный материал, который удалось синтезировать исследователям, не только эластичен, словно резина. Он еще способен в течение недели полностью восстановить разрыв или разрез. Для этого достаточно просто сложить вместе две его части. Уже через четверть часа обе части как бы склеиваются, а через несколько дней от места повреждения не остается и следа.

Такие материалы, способные к «самолечению», ученые и инженеры пытались создать еще давным-давно. Поначалу они создали материалы, в структуре которых содержались микрокапсулы с клеящим составом. Если возникает трещина, клей из разорванных капсул заполняет ее и застывает на воздухе или при смешивании с отвердителем из других капсул. Именно таким способом ныне сами собой заклеиваются пробитые шины на некоторых автомобилях.

Людвиг Леблер и Франсуа Турнилак демонстрируют самовосстанавливающуюся резину

Другой известный подход, позволяющий многократно восстанавливать разрушения, состоит в использовании полимеров, модифицированных компонентами, которые способны образовывать обратимые межмолекулярные связи. Связи разрываются, например, при нагреве и полностью восстанавливаются при охлаждении.

Лет двадцать тому назад появились и первые сведения о сплавах с «памятью». Однако до сих пор они считаются своего рода экзотикой и широкого распространения так и не получили. Отчасти это происходит из-за дороговизны таких материалов и сложности их получения.