Выбрать главу

И все-таки не все благополучно! А не благополучно то, что су­ществует второе решение.

Этому решению соответствует a2, и оно отличается от пер­вого лишь знаком wg

Что все это значит? Скоро мы докажем, что если x1и х2воз­можные решения (24.1) при F(t)=0, то х12—тоже решение этого уравнения! Таким образом, общее решение имеет вид

Теперь можно спросить: «А, собственно, зачем нам беспокоить себя еще одним решением, если нас вполне устраивало первое? К чему эти дополнительные решения, если мы все равно должны взять только действительную часть?» Мы знаем, что нужно взять действительную часть, но откуда математика знает, что мы хо­тим взять действительную часть? Когда у нас была внешняя сила F(t), то мы ее дополнили искусственной силой, и она каким-то образом управляла мнимой частью уравнения. Но когда мы по­ложили F(t)=0, то соглашение о том, что, каково бы ни было х, нужно взять только его действительную часть, стало нашим лич­ным делом, и математическое уравнение об этом ничего не знало. В мире физики есть только действительные решения, но реше­ние, которому мы так радовались, комплексно. Уравнению не из­вестно, что мы делаем совершенно неожиданный шаг и отбираем только действительную часть, и оно предлагает нам еще, так сказать, комплексно сопряженное решение, чтобы, сложив оба решения, мы получили настоящее действительное решение; вот для чего мы взяли еще и a2. Чтобы х было действительным, Ввхр(-iwgt) должно быть комплексно сопряженным к Aexp(iwgt) числом, тогда мнимая часть исчезнет. Таким образом, В долж­но быть комплексно сопряжено с А, поэтому наше решение имеет вид

Значит, наши колебания — это колебания с фазовым сдвигом и, как полагается, с затуханием.

§ 3. Переходные колебания в электрических цепях

Посмотрим, как выглядят переходные колебания. Для этого соберем цепь, изображенную на фиг. 24.2.

Фиг. 24,2. Электрическая цепь для демонстраций переходных колебаний.

В этой цепи разность потенциалов между концами индуктивности L поступает в осцил­лоскоп. Неожиданное включение рубильника S включает допол­нительное напряжение и вызывает в осцилляторной цепи переходные колебания. Эти колебания аналогичны колебаниям механического осциллятора, вызванными неожиданным ударом. Сама цепь представляет собой электрический аналог механи­ческого осциллятора с затуханием, и мы можем наблюдать коле­бания при помощи осциллоскопа. Он покажет нам кривые, анализом которых мы и займемся. На фиг. 24.3—24.6 представ­лены кривые затухающих колебаний, полученные на экране осциллоскопа. На фиг. 24.3 показаны затухающие колебания в цепи с большой Q, т. е. с малым значением g.

Фиг. 24.3. Затухающие коле­бания.

В такой цепи ко­лебания затухают не очень быстро; мы видим довольно длинную синусоиду с медленно убывающим размахом.

Теперь давайте посмотрим, что произойдет, если мы будем уменьшать Q, так что колебания должны затухать быстрее. Чтобы уменьшить Q, увеличим сопротивление цепи R. При повороте ручки сопротивления колебания действительно зату­хают скорее (фиг. 24.4).

Фиг. 24.4. Колебания затухают быстрее.

Если еще увеличить сопротивление, то колебания затухнут еще быстрее (фиг. 24.5).

Фиг, 24.5. Колебания почти исчезли.

Но если сопротив­ление увеличить сверх некоторого предела, колебаний мы вооб­ще не увидим. А может быть, нам просто отказывают глаза? Увеличим еще сопротивление и получим тогда кривую, пред­ставленную на фиг. 24.6; по ней можно лишь с натяжкой сказать, что в цепи произошли колебания, ну разве что одно.

Фиг. 24.6. Колебаний нет.

Можем ли мы математически объяснить это явление?

Сопротивление механического осциллятора, конечно, про­порционально g. В нашем случае g— это R/L. Теперь, если уве­личивать g, то в столь приятных нам решениях (24.14) и (24.15) наступает беспорядок; когда g/2 становится больше w0, реше­ния приходится записывать по-другому: