Выбрать главу

Смирнов Герман

30 лет - ни да, ни нет

По следам сенсаций

Герман СМИРНОВ, инженер

30 лет - ни да, ни нет

На подборку материалов о "чуде в Бабьегородском переулке", опубликованную в "ТМ" № 9 за 1988 год, продолжаются отклики. Не утихают, как видим, давние страсти. Снова идут в ход старые объяснения, соображения и возражения. Снова спорят не о той установке и не о том эксперименте, в котором получался новый необычный эффект. Снова проявляется поразительная глухота к тому, что говорят оппоненты. А заодно вскрылось и другое: далеко не все читатели ясно представляют себе, что такое тепловой насос; как устроен полупроводниковый термоэлектрический нагреватель и что именно произошло в Бабьегородском переулке в 1959 году.

В 1852 году английский ученый лорд Кельвин предложил отапливать помещения с помощью машины, названной им тепловым насосом. В принципе это тот же тепловой двигатель, но если в нем рабочее тело нагревается и сжимается за счет топлива, а при расширении, совершая полезную работу, охлаждается за счет атмосферы, то в тепловом насосе, напротив, оно нагревается от сжатия, отдает теплоту отапливаемому помещению, затем расширяется, охлаждаясь ниже температуры уличного воздуха, и нагревается за счет тепла атмосферы.

Решив сравнить отопление с помощью теплового насоса с печным отоплением, ученый получил удивительные результаты. Образно говоря, каждая единица механической работы, подведенная к идеальному тепловому насосу, прежде чем попасть в отапливаемое помещение, "прихватывает" 5-8 эквивалентных единиц теплоты из уличного воздуха.

Сжигая в печке какое-то количество топлива, можно подвести к воздуху комнаты, скажем, 1 ккал тепла. Если то же количество топлива сжечь в топке теплового двигателя, то в мехническую работу удастся превратить лишь часть этого тепла, ну, процентов 20, что эквивалентно 85 кгм. Подведем теперь эти 85 кгм к тепловому насосу, и он "накачает" в помещение минимум в 6 раз больше теплоты, то есть 510 кгм, или 1,2 ккал. Вместо 1 ккал - 1,2?!

Понять принцип действия теплового насоса поможет такая аналогия. Скажем, нам нужно поддерживать постоянным уровень воды в дырявом бассейне, находящемся на 10 м выше уровня моря. Воспользуемся водой из горного озера на высоте 100 м. Можно пустить ее прямо в бассейн. Но есть другой путь: заставить воду из озера вращать гидротурбину, соединенную с насосом, поднимащим воду из моря в бассейн. Ясно, что в первом случае 1 кг воды из озера даст 1 кг воды в бассейне. Во втором случае все будет иначе: 1 кг воды, падая с высоты 100 м, произведет с помощью гидротурбины 100 кгм работы. Подведенные к насосу, они поднимут из моря на высоту 10 м 10 кг воды!

Но если уровень бассейна и горного озера близки, а КПД турбины и насоса невелики, овчинка может не стоить выделки. Так, кстати, и получилось с затеей лорда Кельвина. Его отопительная машина оказалась малоэкономичной, громоздкой и ненадежной. Она не смогла конкурировать с дешевым угольным отоплением. Идея Кельвина была оставлена на сто лет. Возрождению ее в наше время способствовало совершенствование холодильных устройств.

В сущности, холодильник и тепловой насос - одна и та же машина, но только первая нагревает помещение, откачивая теплоту из холодильной камеры, а вторая - из окружающей среды: речной или морской воды, почвы или атмосферного воздуха.

Ценное достоинство теплового насоса в том, что он в отличие от печки обратимая машина: идеальный кондиционер, способный работать круглый год, зимой нагревая помещение, а летом охлаждая его. Долгое время широкое распространение таких устройств сдерживалось тем, что двигатели, насосы, компрессоры и другое оборудование стоили гораздо дороже обычных печей. Радикальное изменение в состояние дел было внесено быстрым развитием полупроводниковой техники...

В 1821 году немецкий физик Зеебек обнаружил, что если составить цепь из двух разнородных металлических проводников и нагревать один из спаев, то в ней потечет электрический ток. Возникающее при этом напряжение очень невелико: при перепаде температур в 100°С оно в лучшем случае составляет около сотой доли вольта.

Через 13 лет француз Пельтье показал, что эффект Зеебека обратим: пропуская через цепь постоянный ток, можно получить нагрев одного спая и охлаждение другого, правда, весьма незначительные. Возникает мысль: нельзя ли усилить эффект проводников за счет их утолщения, снизив электрическое сопротивление? Однако при этом увеличивается тепловой поток от горячего спая к холодному, что ведет к выравниванию температур спаев и ослаблению эффекта Пельтье. Стало ясно: для создания достаточно мощных термоэлектрических устройств нужны материалы, которые при высокой электропроводности плохо проводили бы тепло. И они нашлись среди полупроводников. Термоэлектродвижущая сила в некоторых из них в сотни раз меньше, чем у металлов. В середине нашего столетия благодаря таким полупроводникам появились сравнительно дешевые термоэлектрические кондиционеры без движущихся частей, в которых перевод из охлаждающего режима в отопительный достигался простой переменой направления тока. Насколько экономичными оказались новые устройства? Чтобы ответить на этот вопрос, следует подробнее остановиться на критериях оценки эффективности тепловых машин вообще.