Выбрать главу

В одном из опытов в сосуд, где находился гелий-II, помещалась миниатюрная стеклянная колбочка с небольшой нагревательной спиралью. Стоило включить ток и немедленно возникал поток гелия из узкого отверстия колбочки. Струя гелия без труда могла быть обнаружена по отклонению легкого крылышка, подвешенного на ее пути перед отверстием колбочки. Но вот что было странным — гелий интенсивно вытекал из колбочки, а все попытки обнаружить обратный приток ни к чему не приводили!

Многочисленные опыты, поставленные П. Л. Капицей с целью обнаружить обратный приток гелия в колбочку, оказались безуспешными. Думая, что гелий втекает в колбочку по стенкам ее узкой части, П. Л. Капица решил уменьшить ширину отверстия в узкой части настолько, чтобы обратный поток вдоль стенок уже никак не мог бы ускользнуть от регистрации. Но и при ширине щели всего в 0,14 микрона никакого встречного потока заметить не удалось. Выходило так, что гелий непрерывно вытекает из колбочки и не втекает в нее!

Исчерпывающее объяснение этого парадокса было дано академиком Львом Давыдовичем Ландау, построившим теорию сверхтекучести.

Оказалось, что при T=2,19° К часть обычного жидкого гелия-I превращается в необычный гелий-II, полностью лишенный вязкости и поэтому способный свободно перемещаться в гелии-I, совершенно не взаимодействуя с ним.

При дальнейшем понижении температуры доля гелия-II возрастает, но и гелий-I все еще остается в этой удивительной смеси. Он может полностью исчезнуть лишь при абсолютном нуле, которые как известно, недостижим.

Таким образом, при температурах ниже 2,19° жидкий гелии является смесью двух разных сортов — гелия-I, обладающего обычной вязкостью, и гелия-II, совершенно лишенного вязкости и поэтому сверхтекучего.

Посмотрим теперь, как же обстоит дело с последним экспериментом академика П. Л. Капицы. Так как гелий-II не испытывает трения ни о стенки колбочки, ни о гелий-I, находящийся в том же сосуде, он беспрепятственно втекает внутрь колбочки и никакие механические эффекты не могут обнаружить его поступление. Попав в колбу и нагревшись выше 2,19° К, гелий-II превращается в гелий-I и устремляется наружу, оказывая своей струей заметное давление на легкое крылышко, помещенное вблизи отверстия колбочки. Таким образом, через отверстие колбочки одновременно проходят два потока — гелий-II втекает внутрь, гелий-I вытекает наряжу. Они проходят друг сквозь друга совершенно не взаимодействуя, полностью не замечая присутствия другого потока, как если бы его вообще не было.

Свойства гелия-II оказались настолько неожиданными и странными, что в одном из своих докладов П. Л. Капица вынужден был заметить следующее: «Если бы это теоретическое положение не было так полно подкреплено экспериментальными доказательствами, оно звучало бы как идея, которую очень трудно признать разумной». Действительно, вряд ли кто-либо из крупных физиков мог поверить в существование сверхтекучей жидкости до того, как она была открыта.

Теория Л. Д. Ландау предсказала также, что в гелии-II наряду с обычными звуковыми волнами могут распространиться особые тепловые волны с существенно иной скоростью. Эти волны были названы «вторым звуком». Строгая теория «второго звука» была построена членом-корреспондентом АН СССР Е. М. Лифшицем, а вскоре после этого «второй звук» был обнаружен в экспериментах, выполненных профессором В. П. Пешковым.

Ценный вклад в теорию сверхтекучести внесли также работы академика Н. Н. Боголюбова.

Природный гелий имеет два стабильных изотопа: у одного из них масса равна четырем, у другого — трем единицам. Согласно квантовой механике эти два сорта гелия должны подчиняться разным статистическим закономерностям: гелий-IV — статистике Бозе — Эйнштейна, гелий-III — статистике Ферми — Дирака. Последняя запрещает переход гелия-III в сверхтекучее состояние даже при абсолютном нуле. Этим, в частности, можно воспользоваться для весьма эффективного разделения изотопов гелия. Исследования различных изотопических эффектов в жидком гелии были выполнены — академиком АН УССР Б. Г. Лазаревым, профессорами Б. П. Пешковым и И. М. Халатниковым.

РАБОТЫ С. И. ВАВИЛОВА ПО ЛЮМИНЕСЦЕНЦИИ

С первых лет научной деятельности академик Сергей Иванович Вавилов заинтересовался явлением фотолюминесценции, изучение которой он не прекращал до конца своей жизни. Люминесценция (или, как ее иногда не совсем верно называют, холодное свечение тел) состоит в том, что под действием света некоторые твердые, жидкие или газообразные вещества испускают характерное для них излучение, называемое излучением люминесценции. При люминесценции происходит поглощение возбуждающего света и испускание света люминесценции, состав которого отличен от поглощенного. Изменение света свидетельствует о наиболее тесном взаимодействия между светом и веществом, благодаря чему изучение люминесценции позволяет раскрыть наиболее тонкие свойства и света и вещества.

Некоторые виды люминесценции — «холодное» свечение некоторых твердых тел и жидкостей — были открыты очень давно. Но несмотря на это, на протяжении нескольких веков развитие люминесценции не выходило за пределы накопления разрозненных наблюдений и опытных фактов, сопровождаемых всевозможными полуэмпирическими правилами и противоречивыми гипотезами. Достаточно сказать, что в то время, когда С. И. Вавилов начинал свою научную работу, не существовало научного определения самого понятия люминесценции, вследствие чего нельзя было ответить на вопросы о том, что такое люминесценция, каковы ее основные признаки и чем она отличается от других видов излучения.

В результате длительных исследований С. И. Вавилов дал определение люминесценции, которое теперь является общепринятым: люминесценцией называется избыток свечения тела над тепловым излучением того же тела в данной спектральной области и при данной температуре, если этот избыток имеет конечную длительность свечения, т. е. не прекращается сразу же после устранения вызвавшей его причины.

Это определение позволяет по доступным измерению признакам отделить люминесценцию от теплового излучения, рассеяния света и других световых процессов.

Элементарный акт люминесценции состоит из следующих трех частей: 1) поглощения кванта падающего света центром свечения (атомом, молекулой, группой атомов или молекул), 2) пребывания центра свечения в возбужденном состоянии и 3) излучения нового кванта при переходе центра свечения из возбужденного состояния в нормальное. Таким образом, основной особенностью люминесцентных процессов является то, что поглощение и испускание света происходит здесь в двух отдельных актах, между которыми центры свечения (поглощающие и излучающие энергию) находятся в промежуточных возбужденных состояниях. Длительность возбужденных состояний, в зависимости от механизма люминесценции, заключена в пределах от миллиардных долей секунды до многих месяцев и даже лет, т. е. значительно превосходит период одного светового колебания (10−15 сек).

Введенный С. И. Вавиловым критерий длительности, являющейся основным свойством люминесценции, позволил выделить люминесценцию из большого числа различных видов излучения, по внешности весьма сходных с ней (т. е. «холодных», не определяющихся температурой светящихся тел), свечение которых прекращается за время 10−15 сек по прекращении возбуждения.

Люминесценция различных веществ чрезвычайно разнообразна по спектральному составу испускаемого излучения и по другим его свойствам (зависимость от температуры, посторонних примесей и т. д.). Поэтому единственными законами люминесценции, справедливыми для любых люминесцирующих тел независимо от их агрегатных состояний, являются законы спектрального преобразования света.

Однако длительные поиски этих законов привели лишь к установлению некоторых эмпирических правил, которые не охватывали всех основных опытных фактов и допускали значительные исключения. Примером такого правила является «закон» Стокса, согласно которому длина волны излучения люминесценции должна быть больше длины волны возбуждающего света. Так как энергия излучения прямо пропорциональна его частоте ν (и обратно пропорциональна длине волны λ), то увеличение длины волны при люминесценции свидетельствует о том, что некоторая доля энергии, поглощенной люминесцентным веществом, остается в нем, переходя в тепло. Но этот «закон» нередко нарушается на опыте.